Eigenfunctions with few critical points

被引:0
作者
Jakobson, D [1 ]
Nadirashvili, N [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
关键词
Laplacian; eigenfunction; critical point; WKB;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sequence of eigenfunctions on T-2 With abounded number of critical points.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [1] Critical points of Laplace eigenfunctions on polygons
    Judge, Chris
    Mondal, Sugata
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (08) : 1559 - 1590
  • [2] Neural Networks with Comparatively Few Critical Points
    Nitta, Tohru
    17TH INTERNATIONAL CONFERENCE IN KNOWLEDGE BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS - KES2013, 2013, 22 : 269 - 275
  • [3] Some remarks on critical sets of Laplace eigenfunctions
    Judge, Chris
    Mondal, Sugata
    ANNALES MATHEMATIQUES DU QUEBEC, 2025, : 155 - 163
  • [4] Norming points and critical points
    Cho, Dong Hoon
    Choi, Yun Sung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1284 - 1290
  • [5] Calculation of Critical Points
    Chen, Shuanglin
    Schmid-Fetzer, Rainer
    Morral, John E.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2022, 43 (06) : 968 - 978
  • [6] Critical points of polynomials
    V. Totik
    Acta Mathematica Hungarica, 2021, 164 : 499 - 517
  • [7] Flows and Critical Points
    Kanishka Perera
    Martin Schechter
    Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 495 - 509
  • [8] Calculation of Critical Points
    Shuanglin Chen
    Rainer Schmid-Fetzer
    John E. Morral
    Journal of Phase Equilibria and Diffusion, 2022, 43 : 968 - 978
  • [9] Critical points of polynomials
    Totik, V
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 499 - 517
  • [10] Monotonicity and critical points of period
    曾宪武
    井竹君
    ProgressinNaturalScience, 1996, (04) : 19 - 25