Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?

被引:209
作者
Archer, AJ
Rauscher, M
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, ITAP, D-70569 Stuttgart, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 40期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0305-4470/37/40/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to clarify confusions in the literature as to whether or not dynamical density functional theories for the one-body density of a classical Brownian fluid should contain a stochastic noise term. We point out that a stochastic as well as a deterministic equation of motion for the density distribution can be justified, depending on how the fluid one-body density is defined-i.e. whether it is an ensemble averaged density distribution or a spatially and/or temporally coarse grained density distribution.
引用
收藏
页码:9325 / 9333
页数:9
相关论文
共 50 条
[21]   Plane-wave-based stochastic-deterministic density functional theory for extended systems [J].
Liu, Qianrui ;
Chen, Mohan .
PHYSICAL REVIEW B, 2022, 106 (12)
[22]   DYNAMICAL PROPERTIES OF STRONGLY INTERACTING BROWNIAN PARTICLES .3. BINARY-MIXTURES [J].
OHTSUKI, T .
PHYSICA A, 1983, 122 (1-2) :212-230
[23]   DYNAMICAL PROPERTIES OF STRONGLY INTERACTING BROWNIAN PARTICLES .2. SELF-DIFFUSION [J].
OHTSUKI, T .
PHYSICA A, 1982, 110 (03) :606-616
[24]   DYNAMICAL PROPERTIES OF STRONGLY INTERACTING BROWNIAN PARTICLES .1. DYNAMIC SHEAR VISCOSITY [J].
OHTSUKI, T .
PHYSICA A, 1981, 108 (2-3) :441-458
[25]   The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles [J].
Kim, Bongsoo ;
Kawasaki, Kyozi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (01) :F33-F42
[26]   Tempering stochastic density functional theory [J].
Minh Nguyen ;
Li, Wenfei ;
Li, Yangtao ;
Rabani, Eran ;
Baer, Roi ;
Neuhauser, Daniel .
JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (20)
[27]   STATISTICAL DESCRIPTION OF INTERACTING BROWNIAN PARTICLES [J].
SONNENBURG, J ;
KREMP, D ;
SANDIG, R .
PHYSICA A, 1991, 175 (03) :451-472
[28]   Brownian Particles Interacting via Synchronizations [J].
Manita, Anatoly .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (19-20) :3440-3451
[29]   INTERACTING BROWNIAN PARTICLES AND THE WIGNER LAW [J].
ROGERS, LCG ;
SHI, Z .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (04) :555-570
[30]   RELAXATION OF INTERACTING CLASSICAL BROWNIAN PARTICLES [J].
ARIMITSU, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (04) :1054-1061