Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?

被引:209
作者
Archer, AJ
Rauscher, M
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, ITAP, D-70569 Stuttgart, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 40期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0305-4470/37/40/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to clarify confusions in the literature as to whether or not dynamical density functional theories for the one-body density of a classical Brownian fluid should contain a stochastic noise term. We point out that a stochastic as well as a deterministic equation of motion for the density distribution can be justified, depending on how the fluid one-body density is defined-i.e. whether it is an ensemble averaged density distribution or a spatially and/or temporally coarse grained density distribution.
引用
收藏
页码:9325 / 9333
页数:9
相关论文
共 19 条
[1]   Dynamical density functional theory and its application to spinodal decomposition [J].
Archer, AJ ;
Evans, R .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (09) :4246-4254
[2]   Langevin equation for the density of a system of interacting Langevin processes [J].
Dean, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (24) :L613-L617
[3]   Spinodal decomposition of colloids in the initial and intermediate stages [J].
Dhont, JKG .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (12) :5112-5125
[4]   NATURE OF THE LIQUID-VAPOR INTERFACE AND OTHER TOPICS IN THE STATISTICAL-MECHANICS OF NONUNIFORM, CLASSICAL FLUIDS [J].
EVANS, R .
ADVANCES IN PHYSICS, 1979, 28 (02) :143-200
[5]  
Evans R., 1992, FUNDAMENTALS INHOMOG
[6]   On the controversy over the stochastic density functional equations [J].
Frusawa, H ;
Hayakawa, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (15) :L155-L160
[7]  
Goldenfeld N., 1992, LECT PHASE TRANSITIO
[8]   Microscopic analyses of the dynamical density functional equation of dense fluids [J].
Kawasaki, K .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) :527-546
[9]   STOCHASTIC-MODEL OF SLOW DYNAMICS IN SUPERCOOLED LIQUIDS AND DENSE COLLOIDAL SUSPENSIONS [J].
KAWASAKI, K .
PHYSICA A, 1994, 208 (01) :35-64
[10]   RANDOM SOLUTIONS FROM A REGULAR DENSITY FUNCTIONAL HAMILTONIAN - A STATIC AND DYNAMICAL THEORY FOR THE STRUCTURAL GLASS-TRANSITION [J].
KIRKPATRICK, TR ;
THIRUMALAI, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :L149-L155