Reconstruction of functions in spline subspaces from local averages

被引:47
作者
Sun, WC [1 ]
Zhou, XW [1 ]
机构
[1] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
关键词
average sampling; sampling theorems; spline subspaces;
D O I
10.1090/S0002-9939-03-07082-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the reconstruction of functions in spline subspaces from local averages. We present an average sampling theorem for shift invariant subspaces generated by cardinal B-splines and give the optimal upper bound for the support length of averaging functions. Our result generalizes an earlier result by Aldroubi and Grochenig.
引用
收藏
页码:2561 / 2571
页数:11
相关论文
共 27 条
[1]   SAMPLING PROCEDURES IN FUNCTION-SPACES AND SYMPTOTIC EQUIVALENCE WITH SHANNON SAMPLING THEORY [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (1-2) :1-21
[2]   Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces [J].
Aldroubi, A ;
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (01) :93-103
[3]  
ALDROUBI A, 1992, WAVELETS TUTORIAL TH, P509
[4]  
[Anonymous], 1998, FUNCT APPROX COMMENT
[5]  
[Anonymous], 1992, WAVELETS TUTORIAL TH
[6]  
[Anonymous], 2000, COMMUN APPL ANAL
[7]   Irregular sampling theorems for wavelet subspaces [J].
Chen, W ;
Itoh, S ;
Shiki, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1131-1142
[8]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[9]  
Daubechies I., 1992, 10 LECT WAV SIAM PHI
[10]  
Feichtinger H.G., 1994, Wavelets Math. Appl, P305