On the blow-up set of the Yang-Mills flow on Kahler surfaces

被引:14
作者
Daskalopoulos, Georgios D. [1 ]
Wentworth, Richard A.
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00209-006-0075-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Yang-Mills flow on a Kahler surface with holomorphic initial data converges smoothly away from a singular set determined by the Harder-Narasimhan-Seshadri filtration of the initial holomorphic bundle.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1986, COMMUN PUR APPL MATH
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]  
Buchdahl N.P., 1999, J GEOM ANAL, V9, P391
[4]   HERMITIAN-EINSTEIN CONNECTIONS AND STABLE VECTOR-BUNDLES OVER COMPACT COMPLEX-SURFACES [J].
BUCHDAHL, NP .
MATHEMATISCHE ANNALEN, 1988, 280 (04) :625-648
[5]  
DASKALOPOULOS GD, 1992, J DIFFER GEOM, V36, P699
[6]   Holomorphic frames for weakly converging holomorphic vector bundles [J].
Daskalopoulos, GD ;
Wentworth, RA .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :36-40
[7]  
Daskalopoulos GD, 2004, J REINE ANGEW MATH, V575, P69
[8]  
Donaldson S. K., 1990, GEOMETRY FOUR MANIFO
[9]  
DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
[10]  
FREED D, 1984, MSRI PUBL, V1