Polynomial decay of the gap length for Ck quasi-periodic Schrodinger operators and spectral application

被引:9
作者
Cai, Ao [1 ,2 ,3 ,4 ]
Wang, Xueyin [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, CMAFCIO, Lisbon, Portugal
关键词
Schrodinger operators; Spectral theory; Linear cocycles; KAM theory; SHARP HOLDER CONTINUITY; ROTATION NUMBER; CANTOR SPECTRUM; INTEGRATED DENSITY; REDUCIBILITY;
D O I
10.1016/j.jfa.2021.109035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the quasi-periodic Schrodinger operators in the local perturbative regime where the frequency is Diophantine and the potential is C-k sufficiently small depending on the Diophantine constants, we prove that the length of the corresponding spectral gap has a polynomial decay upper bound with respect to its label. This is based on a refined quantitative reducibility theorem for C-k quasi-periodic SL(2, R) cocycles, and also based on the Moser-Poschel argument for the related Schrodinger cocycles. As an application, we are able to show the homogeneity of the spectrum. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 36 条
[1]  
Amor SH, 2009, COMMUN MATH PHYS, V287, P565, DOI 10.1007/s00220-008-0688-x
[2]  
Avila A., PREPRINT
[3]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342
[4]   CANTOR SPECTRUM FOR SCHRODINGER OPERATORS WITH POTENTIALS ARISING FROM GENERALIZED SKEW-SHIFTS [J].
Avila, Artur ;
Bochi, Jairo ;
Damanik, David .
DUKE MATHEMATICAL JOURNAL, 2009, 146 (02) :253-280
[5]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[6]   CANTOR SPECTRUM FOR THE ALMOST MATHIEU EQUATION [J].
BELLISSARD, J ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (03) :408-419
[7]   ALMOST PERIODICITY IN TIME OF SOLUTIONS OF THE KDV EQUATION [J].
Binder, Ilia ;
Damanik, David ;
Goldstein, Michael ;
Lukic, Milivoje .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (14) :2633-2678
[8]   Reducibility of Finitely Differentiable Quasi-Periodic Cocycles and Its Spectral Applications [J].
Cai, Ao ;
Ge, Lingrui .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) :2079-2104
[9]   Sharp Holder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles [J].
Cai, Ao ;
Chavaudret, Claire ;
You, Jiangong ;
Zhou, Qi .
MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) :931-958
[10]  
Carleson L., 1983, HARM AN C HON A ZYGM, VI, P349