Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with-weak cross-diffusion

被引:0
|
作者
Choi, YS [1 ]
Lui, R
Yamada, Y
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
关键词
self-diffusion; a priori estimates; global existence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Shigesada-Kawasaki-Teramoto model is a generalization of the classical Lotka-Volterra competition model for which the competing species undergo both diffusion, self-diffusion and cross-diffusion. Very few mathematical results are known for this model, especially in higher space dimensions. In this paper, we shall prove global existence of strong solutions in any space dimension for this model when the cross-diffusion coefficient in the first species is sufficiently small and when there is no self-diffusion or cross-diffusion in the second species.
引用
收藏
页码:1193 / 1200
页数:8
相关论文
共 50 条
  • [31] Existence of the solutions of a reaction cross-diffusion model for two species
    Ma, Li
    APPLIED MATHEMATICS LETTERS, 2018, 79 : 118 - 122
  • [32] Global existence of solutions for quasilinear parabolic systems with the cross-diffusion effect
    Yang, WL
    Zhou, HY
    Cho, YJ
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 205 - 222
  • [33] GRADIENT ESTIMATES AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS TO A CROSS-DIFFUSION SYSTEM
    Hoang, Luan T.
    Nguyen, Truyen V.
    Phan, Tuoc V.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) : 2122 - 2177
  • [34] Global existence of solutions to a cross-diffusion system in higher dimensional domains
    Li, Y
    Zhao, CS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (02) : 185 - 192
  • [35] Existence of global solutions for a three-species predator-prey model with cross-diffusion
    Pang, P. Y. H.
    Wang, M. X.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (04) : 555 - 560
  • [36] GLOBAL EXISTENCE FOR A TWO-PHASE FLOW MODEL WITH CROSS-DIFFUSION
    Daus, Esther S.
    Milisic, Josipa-Pina
    Zamponi, Nicola
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (03): : 957 - 979
  • [37] Existence of weak solutions to the Keller-Segel chemotaxis system with additional cross-diffusion
    Arumugam, Gurusamy
    Erhardt, Andre H.
    Eswaramoorthy, Indurekha
    Krishnan, Balachandran
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 54
  • [38] Existence and stability of global solutions for a cross-diffusion predator-prey model with sex-structure
    Xu, Hongwu
    Xu, Shenghu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 999 - 1009
  • [39] Global existence of classical solutions to the cross-diffusion three-species model with prey-taxis
    Li, Chenglin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) : 1394 - 1401
  • [40] Existence and Stability of Global Solutions for A Three-Species Predator-Prey Model with Cross-Diffusion
    Xu, Shenghu
    Lv, Weidong
    Xu, Hongwu
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 377 - 382