Spatio-temporal monitoring and modelling of birch pollen levels in Belgium

被引:21
作者
Verstraeten, Willem W. [1 ]
Dujardin, Sebastien [2 ]
Hoebeke, Lucie [3 ]
Bruffaerts, Nicolas [3 ]
Kouznetsov, Rostislav [4 ]
Dendoncker, Nicolas [2 ]
Hamdi, Rafiq [1 ,5 ]
Linard, Catherine [2 ]
Hendrickx, Marijke [3 ]
Sofiev, Mikhail [4 ]
Delcloo, Andy W. [1 ,5 ]
机构
[1] Royal Meteorol Inst Belgium, Brussels, Belgium
[2] Univ Namur, Dept Geog, Namur, Belgium
[3] Sciensano, Mycol & Aerobiol Unit, Brussels, Belgium
[4] Finnish Meteorol Inst, Helsinki, Finland
[5] Univ Ghent, Dept Phys & Astron, Ghent, Belgium
关键词
Birch pollen; Birch fraction maps; Pollen observations; SILAM model; Time series; NUMERICAL-MODEL; BETULA POLLEN; DISPERSION; VARIABILITY; TRANSPORT; EMISSION; MAST;
D O I
10.1007/s10453-019-09607-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In Belgium, ~ 10% of the people is estimated to suffer from allergies due to pollen emitted by the birch family trees. Timely information on forthcoming pollen exposure episodes using a forecasting system can allow patients to take preventive measures. To date, the only available information on pollen concentrations in Belgium comes from five stations that monitor daily airborne birch pollen concentrations, but real-time and detailed spatial information is lacking. Pollen transport models can both quantify and forecast the spatial and temporal distribution of airborne birch pollen concentrations if accurate and updated maps of birch pollen emission sources are available and if the large inter-seasonal variability of birch pollen is considered. Here we show that the SILAM model driven by ECMWF ERA5 meteorological data is able to determine airborne birch pollen levels using updated maps of areal fractions of birch trees, as compared to the pollen observations of the monitoring stations in Belgium. Forest inventory data of the Flemish and Walloon regions were used to update the default MACCIII birch map. Spaceborne MODIS vegetation activity combined with an updated birch fraction map and updated start and end dates of the birch pollen season were integrated into SILAM. The correlation (R-2) between SILAM modelled and observed time series of daily birch pollen levels of 50 birch pollen seasons increased up to ~ 50%. The slopes of the linear correlation increased on average with ~ 60%. Finally, SILAM is able to capture the threshold of 80 pollen grains m(-3) exposure from the observations.
引用
收藏
页码:703 / 717
页数:15
相关论文
共 50 条
  • [41] Modelling the seasonal dynamics of Aedesalbopictus populations using a spatio-temporal stacked machine learning model
    Da Re, Daniele
    Marini, Giovanni
    Bonannella, Carmelo
    Laurini, Fabrizio
    Manica, Mattia
    Anicic, Nikoleta
    Albieri, Alessandro
    Angelini, Paola
    Arnoldi, Daniele
    Bertola, Federica
    Caputo, Beniamino
    De Liberato, Claudio
    della Torre, Alessandra
    Flacio, Eleonora
    Franceschini, Alessandra
    Gradoni, Francesco
    Kadriaj, Perparim
    Lencioni, Valeria
    Del Lesto, Irene
    Russa, Francesco La
    Lia, Riccardo Paolo
    Montarsi, Fabrizio
    Otranto, Domenico
    L'Ambert, Gregory
    Rizzoli, Annapaola
    Rombola, Pasquale
    Romiti, Federico
    Stancher, Gionata
    Torina, Alessandra
    Velo, Enkelejda
    Virgillito, Chiara
    Zandonai, Fabiana
    Rosa, Roberto
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [42] Spatio-temporal analysis of fire occurrence in Australia
    Valente, Fernanda
    Laurini, Marcio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (09) : 1759 - 1770
  • [43] Spatio-temporal dynamics of pneumonia in bighorn sheep
    Cassirer, E. Frances
    Plowright, Raina K.
    Manlove, Kezia R.
    Cross, Paul C.
    Dobson, Andrew P.
    Potter, Kathleen A.
    Hudson, Peter J.
    JOURNAL OF ANIMAL ECOLOGY, 2013, 82 (03) : 518 - 528
  • [44] Spatio-temporal characteristics of the Agulhas Current retroflection
    Dencausse, Guillaume
    Arhan, Michel
    Speich, Sabrina
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2010, 57 (11) : 1392 - 1405
  • [45] Spatio-temporal changes in temperature over India
    Oza, Markand
    Kishtawal, C. M.
    CURRENT SCIENCE, 2015, 109 (06): : 1154 - 1158
  • [46] Estimation of parameterized spatio-temporal dynamic models
    Xu, Ke
    Wikle, Christopher K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (02) : 567 - 588
  • [47] A Bayesian hierarchical spatio-temporal rainfall model
    Mashford, John
    Song, Yong
    Wang, Q. J.
    Robertson, David
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (02) : 217 - 229
  • [48] Spatio-temporal Granger causality: A new framework
    Luo, Qiang
    Lu, Wenlian
    Cheng, Wei
    Valdes-Sosa, Pedro A.
    Wen, Xiaotong
    Ding, Mingzhou
    Feng, Jianfeng
    NEUROIMAGE, 2013, 79 : 241 - 263
  • [49] Spatio-Temporal Vegetation Dynamic and Persistence under Climatic and Anthropogenic Factors
    Bashir, Barjeece
    Cao, Chunxiang
    Naeem, Shahid
    Joharestani, Mehdi Zamani
    Bo, Xie
    Afzal, Huma
    Jamal, Kashif
    Mumtaz, Faisal
    REMOTE SENSING, 2020, 12 (16)
  • [50] On the Spatio-Temporal Characteristics of Aerosol Optical Depth in the Arabian Gulf Zone
    Barbulescu, Alina
    ATMOSPHERE, 2022, 13 (06)