Deep Learning for MMSE Estimation of a Gaussian Source in the Presence of Bursty Impulsive Noise

被引:8
作者
Ahmed, Imtiaz [1 ]
Alam, Md Sahabul [2 ]
Hossain, Md Jahangir [3 ]
Kaddoum, Georges [4 ]
机构
[1] Marshall Univ, Dept Comp Sci & Elect Engn, Huntington, WV 25755 USA
[2] Carleton Univ, Syst & Comp Engn Dept, Ottawa, ON K1S 5B6, Canada
[3] Univ British Columbia Okanagan, Sch Engn, Kelowna, BC V1V 1V7, Canada
[4] Univ Quebec, Elect Engn Dept, Ecole Technol Super ETS, Montreal, PQ H3C 1K3, Canada
关键词
Estimation; Training; Gaussian noise; Deep learning; Noise measurement; Bayes methods; Signal processing algorithms; Long short term memory; deep learning; bursty impulsive noise; detection of noise state; NETWORKS; COHERENT; POWER; MODEL;
D O I
10.1109/LCOMM.2020.3045665
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We develop a deep learning (DL) based Gaussian source estimation technique when the source is impaired by bursty impulsive noise. This noise is correlated in time, and hence estimating the source with a low-complexity algorithm is a challenging task. To address this challenge, we train a long short term memory (LSTM) based deep neural network (DNN) model offline with different bursty noisy observations and deploy the trained model in real-time. The trained model detects the noise state online and thus applies a linear minimum mean square error (LMMSE) method to estimate the source signal. To demonstrate the effectiveness of the proposed scheme, we compare its performance with baseline schemes. Simulation results reveal the effectiveness of the proposed estimation technique in terms of mean square error and computational complexity.
引用
收藏
页码:1211 / 1215
页数:5
相关论文
共 26 条
[1]   Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges [J].
Aceto, Giuseppe ;
Ciuonzo, Domenico ;
Montieri, Antonio ;
Pescape, Antonio .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (02) :445-458
[2]  
Agba BL, 2019, WIRELESS NETW-GER, P35, DOI 10.1007/978-3-319-91328-5_3
[3]  
Ahmed M, 2020, HOLLYWOOD LEGEND SER, P1
[4]   Bayesian MMSE Estimation of a Gaussian Source in the Presence of Bursty Impulsive Noise [J].
Alam, Md Sahabul ;
Kaddoum, Georges ;
Agba, Basile L. .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (09) :1846-1849
[5]   Performance Analysis of DF Cooperative Relaying Over Bursty Impulsive Noise Channel [J].
Alam, Md Sahabul ;
Labeau, Fabrice ;
Kaddoum, Georges .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (07) :2848-2859
[6]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[7]   Bayesian Estimation of a Gaussian Source in Middleton's Class-A Impulsive Noise [J].
Banelli, Paolo .
IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (10) :956-959
[8]   Is the PHY Layer Dead? [J].
Dohler, Mischa ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Papadias, Constantinos B. ;
Valenzuela, Reinaldo A. .
IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (04) :159-165
[9]   On Reliable Communications over Channels Impaired by Bursty Impulse Noise [J].
Fertonani, Dario ;
Colavolpe, Giulio .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (07) :2024-2030
[10]   On MMSE Estimation: A Linear Model Under Gaussian Mixture Statistics [J].
Flam, John T. ;
Chatterjee, Saikat ;
Kansanen, Kimmo ;
Ekman, Torbjorn .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) :3840-3845