Nanomotor-Based Strategy for Enhanced Penetration across Vasculature Model

被引:69
作者
Peng, Fei [1 ,2 ]
Men, Yongjun [1 ]
Tu, Yingfeng [1 ,3 ]
Chen, Yongming [2 ]
Wilson, Daniela A. [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] Southern Med Univ, Sch Pharmaceut Sci, Guangzhou 510515, Guangdong, Peoples R China
基金
欧洲研究理事会;
关键词
cargo delivery; enhanced permeation and penetration; nanomotors; tumor vasculature; MESOPOROUS JANUS NANOMOTORS; AUTONOMOUS MOVEMENT; CATALYTIC-ACTIVITY; DRUG-DELIVERY; CARGO DELIVERY; MOTOR PROTEINS; NANOPARTICLES; CELL; POLYMERSOMES; SIZE;
D O I
10.1002/adfm.201706117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here the first nanomotor-based strategy is reported to effectively cross tumor vasculature endothelium. The designed nanomotors are based on (poly(ethylene glycol)-b-polystyrene and poly(acrylic acid)-b-polystyrene) building blocks, which further self-assemble into polymersomes of tunable sizes (100, 300 nm). The polymersomes are readily loaded with hydrophilic model drug into the aqueous compartment. A catalytic platinum cap is then partially deposited on the surface of the polymersome via electron beam evaporation, resulting in a polymersome Janus nanomotor. In a tumor vasculature model, these cargo-loaded polymersome nanomotors demonstrate enhanced penetration across the endothelium.
引用
收藏
页数:8
相关论文
共 72 条
[1]   Chemical locomotives based on polymer supported catalytic nanoparticles [J].
Agrawal, Aditya ;
Dey, Krishna Kanti ;
Paul, Anumita ;
Basu, Saurabh ;
Chattopadhyay, Arun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (08) :2797-2801
[2]   A molecular elevator [J].
Badjic, JD ;
Balzani, V ;
Credi, A ;
Silvi, S ;
Stoddart, JF .
SCIENCE, 2004, 303 (5665) :1845-1849
[3]   Targeted drug delivery to tumors: Myths, reality and possibility [J].
Bae, You Han ;
Park, Kinam .
JOURNAL OF CONTROLLED RELEASE, 2011, 153 (03) :198-205
[4]   Catalytic Janus Motors on Microfluidic Chip: Deterministic Motion for Targeted Cargo Delivery [J].
Baraban, Larysa ;
Makarov, Denys ;
Streubel, Robert ;
Moench, Ingolf ;
Grimm, Daniel ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
ACS NANO, 2012, 6 (04) :3383-3389
[5]   Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects [J].
Barua, Sutapa ;
Mitragotri, Samir .
NANO TODAY, 2014, 9 (02) :223-243
[6]   zSelf-propelled particles that transport cargo through flowing blood and halt hemorrhage [J].
Baylis, James R. ;
Yeon, Ju Hun ;
Thomson, Max H. ;
Kazerooni, Amir ;
Wang, Xu ;
St John, Alex E. ;
Lim, Esther B. ;
Chien, Diana ;
Lee, Anna ;
Zhang, Jesse Q. ;
Piret, James M. ;
Machan, Lindsay S. ;
Burke, Thomas F. ;
White, Nathan J. ;
Kastrup, Christian J. .
SCIENCE ADVANCES, 2015, 1 (09)
[7]   Techniques To Control Polymersome Size [J].
Bleul, Regina ;
Thiermann, Raphael ;
Maskos, Michael .
MACROMOLECULES, 2015, 48 (20) :7396-7409
[8]   Ionic effects in self-propelled Pt-coated Janus swimmers [J].
Brown, Aidan ;
Poon, Wilson .
SOFT MATTER, 2014, 10 (22) :4016-4027
[9]   Making molecular machines work [J].
Browne, Wesley R. ;
Feringa, Ben L. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :25-35
[10]   Gravitaxis in Spherical Janus Swimming Devices [J].
Campbell, Andrew I. ;
Ebbens, Stephen J. .
LANGMUIR, 2013, 29 (46) :14066-14073