Study of structural and electrochemical characteristics of LiNi0.33Mn0.33Co0.33O2 electrode at lithium content variation

被引:53
作者
Ivanishchev, Aleksandr V. [1 ,2 ]
Bobrikov, Ivan A. [2 ,3 ]
Ivanishcheva, Irina A. [2 ]
Ivanshina, Olga Yu. [2 ,3 ]
机构
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Ctr Electrochem Energy Storage, 3 Nobel Str, Moscow 143026, Russia
[2] Saratov NG Chernyshevskii State Univ, Inst Chem, 83 Astrakhanskaya Str, Saratov 410012, Russia
[3] Joint Inst Nucl Res, 6 Joliot Curie Str, Dubna 141980, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Layered oxide; LiNi0.33CO0.33Mn0.33O2; Structural; morphological; thermodynamic and kinetic parameters; Diffusion coefficient of lithium ions; GITT; EIS; LI-ION BATTERIES; LI-1-DELTA-COO2 FILM ELECTRODE; LICOO2; THIN-FILMS; CATHODE MATERIALS; IMPEDANCE SPECTROSCOPY; DIFFUSION-COEFFICIENT; INSERTION MATERIAL; THERMAL-STABILITY; PHASE-TRANSITIONS; CURRENT TRANSIENT;
D O I
10.1016/j.jelechem.2018.01.020
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we present the results of a joint analysis of the structural, morphological, and electrochemical (thermodynamic and kinetic) characteristics of the LiNi0.33Co0.33Mn0.33O2 electrode. In the present study we applied following methods: scanning electron microscopy (SEM) with energy -dispersive elemental microanalysis (EDS), X-ray diffraction (XRD) in the operando mode during reversible lithiation/delithiation of the electrode, constant current chronopotentiometry (galvanostatic charge/discharge), galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS). Using the material morphology analysis, the geometry of the space for the diffusion of lithium ions within its particles was determined. Structural studies made it possible to track the nature of the change in the unit cell parameters of the crystal structure of the material during the reversible lithiation/delithiation of the electrode. Electrochemical methods made it possible to determine the dependencies of the thermodynamic and kinetic parameters of the intercalation process on the electrode potential (the concentration of lithium ions in the intercalate). It was found that the lithium ions diffusion coefficient increases with the growth of the electrode potential (decreasing of the concentration of lithium ions), passes through a smooth maximum, and decreases gradually. The variation of D occurs in the range of 10(-13)-2 . 10(-12) cm(2).s(-1). Synchronously with D, the structural parameter c changes in the range of 14.2-14.5 angstrom, which determines the diffusion limitations in the material. The existence of a significant and unavoidable hysteresis of the dependencies of the kinetic, thermodynamic and structural parameters on the electrode potential as well as the dependencies of the relaxed potential on the concentration of lithium ions in the intercalate has been established.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 62 条
[1]   CoO2, the end member of the LixCoO2 solid solution [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :1114-1123
[2]   Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content [J].
Amin, Ruhul ;
Chiang, Ming .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (08) :A1512-A1517
[3]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[4]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[5]  
Bensalah N., 2016, J. Mater. Sci. Eng, V5, p258/1
[6]   In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode [J].
Bobrikov, I. A. ;
Samoylova, N. Yu. ;
Sumnikov, S. V. ;
Ivanshina, O. Yu. ;
Vasin, R. N. ;
Beskrovnyi, A. I. ;
Balagurov, A. M. .
JOURNAL OF POWER SOURCES, 2017, 372 :74-81
[7]   LIXNIO2, A PROMISING CATHODE FOR RECHARGEABLE LITHIUM BATTERIES [J].
BROUSSELY, M ;
PERTON, F ;
BIENSAN, P ;
BODET, JM ;
LABAT, J ;
LECERF, A ;
DELMAS, C ;
ROUGIER, A ;
PERES, JP .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :109-114
[8]   7Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases:: evidence of electronic and ionic mobility, and redox processes [J].
Carlier, D ;
Ménétrier, M ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (02) :594-603
[9]   Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J].
Chen, CH ;
Liu, J ;
Stoll, ME ;
Henriksen, G ;
Vissers, DR ;
Amine, K .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :278-285
[10]   Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (07) :1079-1090