The strong law of large numbers and the Shannon-McMillan theorem for the mth-order nonhomogeneous Markov chains indexed by an m rooted Cayley tree

被引:1
作者
Shi, Zhiyan [1 ]
Yang, Weiguo [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
m- rooted Cayley tree; mth-order Nonhomogeneous Markov chain; Strong law of large numbers; Shannon-McMillan theorem; ASYMPTOTIC EQUIPARTITION PROPERTY; LIMIT PROPERTIES; ERGODIC THEOREM; INFINITE TREE;
D O I
10.1080/03610926.2013.791371
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we studied the strong law of large numbers(LLN) and Shannon-McMillan theorem for an mth-order nonhomogeneous Markov chain indexed by an m- rooted Cayley tree. This article generalized the relative results of level mth-order nonhomogeneous Markov chains indexed by an m- rooted Cayley tree.
引用
收藏
页码:2045 / 2055
页数:11
相关论文
共 21 条
[1]   A SANDWICH PROOF OF THE SHANNON-MCMILLAN-BREIMAN THEOREM [J].
ALGOET, PH ;
COVER, TM .
ANNALS OF PROBABILITY, 1988, 16 (02) :899-909
[2]   THE STRONG ERGODIC THEOREM FOR DENSITIES - GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1985, 13 (04) :1292-1303
[3]   MARKOV-CHAINS INDEXED BY TREES [J].
BENJAMINI, I ;
PERES, Y .
ANNALS OF PROBABILITY, 1994, 22 (01) :219-243
[4]   ENTROPIC ASPECTS OF RANDOM-FIELDS ON TREES [J].
BERGER, T ;
YE, Z .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :1006-1018
[5]   THE INDIVIDUAL ERGODIC THEOREM OF INFORMATION-THEORY [J].
BREIMAN, L .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03) :809-811
[6]  
CHUNG KL, 1961, ANN MATH STAT, V32, P612, DOI 10.1214/aoms/1177705069
[7]   The strong law of large numbers and the Shannon-McMillan theorem for nonhomogeneous Markov chains indexed by a Cayley tree [J].
Dong, Yan ;
Yang, Weiguo ;
Bai, Jianfang .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) :1883-1890
[8]   Strong law of large numbers for Markov chains indexed by an infinite tree with uniformly bounded degree [J].
Huang HuiLin ;
Yang WeiGuo .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02) :195-202
[9]   THE BASIC THEOREMS OF INFORMATION THEORY [J].
MCMILLAN, B .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (02) :196-219
[10]   AUTOMORPHISM INVARIANT-MEASURES ON TREES [J].
PEMANTLE, R .
ANNALS OF PROBABILITY, 1992, 20 (03) :1549-1566