Solutions and multiple solutions for problems with the p-Laplacian

被引:10
作者
Hu, Shouchuan
Papageorgiou, Nikolaos S. [1 ]
机构
[1] SW Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 150卷 / 04期
关键词
locally Lipschitz potential; nonsmooth C and PS-conditions; linking sets; first and second eigenvalues of the p-Laplacian; local linking condition;
D O I
10.1007/s00605-006-0432-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider two nonlinear elliptic problems driven by the p-Laplacian and having a nonsmooth potential (hemivariational inequalities). The first is an eigenvalue problem and we prove that if the parameter lambda < lambda(2) = the second eigenvalue of the p-Laplacian, then there exists a nontrivial smooth solution. The second problem is resonant both near zero and near infinity for the principal eigenvalue of the p-Laplacian. For this problem we prove a multiplicity result. Our approach is variational based on the nonsmooth critical point theory.
引用
收藏
页码:309 / 326
页数:18
相关论文
共 19 条
[1]  
ANANE A, 1996, NONLINEAR PARTIAL DI, P1
[2]   Some remarks on critical point theory for locally Lipschitz functions [J].
Barletta, G ;
Marano, SA .
GLASGOW MATHEMATICAL JOURNAL, 2003, 45 :131-141
[3]   On the Morse indices of sign changing solutions of nonlinear elliptic problems [J].
Bartsch, T ;
Chang, KC ;
Wang, ZQ .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :655-677
[4]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal, V7, P115
[5]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[6]   EXISTENCE RESULTS FOR PERTURBATIONS OF THE P-LAPLACIAN [J].
COSTA, DG ;
MAGALHAES, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (03) :409-418
[7]  
Cuesta M, 2001, ELECT J DIFFERENTIAL, V33, P1
[8]   Linking and existence results for perturbations of the p-Laplacian [J].
Fan, XL ;
Li, ZC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (08) :1413-1420
[9]   Existence of solutions for the p-Laplacian with crossing nonlinearity [J].
Fan, XL ;
Zhao, YZ ;
Huang, GF .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (04) :1019-1024
[10]   A local bifurcation theorem for degenerate elliptic equations with radial symmetry [J].
García-Melián, J ;
de Lis, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :27-43