Harnessing big data to rethink land heterogeneity in Earth system models

被引:48
作者
Chaney, Nathaniel W. [1 ]
Van Huijgevoort, Marjolein H. J. [1 ]
Shevliakova, Elena [2 ]
Malyshev, Sergey [2 ]
Milly, Paul C. D. [3 ]
Gauthier, Paul P. G. [4 ]
Sulman, Benjamin N. [5 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
[3] US Geol Survey, Princeton, NJ USA
[4] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[5] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA USA
关键词
SOIL-MOISTURE; SURFACE PROCESSES; CLIMATE SURFACES; WATER; ALGORITHM; ENERGY; SCALE; EVAPOTRANSPIRATION; SIMULATIONS; EVOLUTION;
D O I
10.5194/hess-22-3311-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The continual growth in the availability, detail, and wealth of environmental data provides an invaluable asset to improve the characterization of land heterogeneity in Earth system models - a persistent challenge in macroscale models. However, due to the nature of these data (volume and complexity) and computational constraints, these data are underused for global applications. As a proof of concept, this study explores how to effectively and efficiently harness these data in Earth system models over a 1/4 degrees (similar to 25 km) grid cell in the western foothills of the Sierra Nevada in central California. First, a novel hierarchical multivariate clustering approach (HMC) is introduced that summarizes the high-dimensional environmental data space into hydrologically interconnected representative clusters (i.e., tiles). These tiles and their associated properties are then used to parameterize the sub-grid heterogeneity of the Geophysical Fluid Dynamics Laboratory (GFDL) LM4-HB land model. To assess how this clustering approach impacts the simulated water, energy, and carbon cycles, model experiments are run using a series of different tile configurations assembled using HMC. The results over the test domain show that (1) the observed similarity over the landscape makes it possible to converge on the macroscale response of the fully distributed model with around 300 sub-grid land model tiles; (2) assembling the sub-grid tile configuration from available environmental data can have a large impact on the macroscale states and fluxes of the water, energy, and carbon cycles; for example, the defined subsurface connections between the tiles lead to a dampening of macroscale extremes; (3) connecting the fine-scale grid to the model tiles via HMC enables circumvention of the classic scale discrepancies between the macroscale and field-scale estimates; this has potentially significant implications for the evaluation and application of Earth system models.
引用
收藏
页码:3311 / 3330
页数:20
相关论文
共 65 条
[1]   Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation [J].
Ajami, Hoori ;
Khan, Urooj ;
Tuteja, Narendra K. ;
Sharma, Ashish .
ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 85 :319-331
[2]   Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign [J].
Anderson, Martha C. ;
Kustas, William P. ;
Alfieri, Joseph G. ;
Gao, Feng ;
Hain, Christopher ;
Prueger, John H. ;
Evett, Steven ;
Colaizzi, Paul ;
Howell, Terry ;
Chavez, Jose L. .
ADVANCES IN WATER RESOURCES, 2012, 50 :162-177
[3]  
AVISSAR R, 1989, MON WEATHER REV, V117, P2113, DOI 10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO
[4]  
2
[5]   Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets [J].
Bagley, Justin E. ;
Desai, Ankur R. ;
Dirmeyer, Paul A. ;
Foley, Jonathan A. .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (01)
[6]   Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities [J].
Bechtel, Benjamin ;
Alexander, Paul J. ;
Boehner, Juergen ;
Ching, Jason ;
Conrad, Olaf ;
Feddema, Johannes ;
Mills, Gerald ;
See, Linda ;
Stewart, Iain .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (01) :199-219
[7]   Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change [J].
Berg, Alexis ;
Lintner, Benjamin R. ;
Findell, Kirsten ;
Seneviratne, Sonia I. ;
van den Hurk, Bart ;
Ducharne, Agnes ;
Cheruy, Frederique ;
Hagemann, Stefan ;
Lawrence, David M. ;
Malyshev, Sergey ;
Meier, Arndt ;
Gentine, Pierre .
JOURNAL OF CLIMATE, 2015, 28 (03) :1308-1328
[8]   A dynamic TOPMODEL [J].
Beven, K ;
Freer, J .
HYDROLOGICAL PROCESSES, 2001, 15 (10) :1993-2011
[9]   Hyper-resolution global hydrological modelling: what is next? "Everywhere and locally relevant" [J].
Bierkens, Marc F. P. ;
Bell, Victoria A. ;
Burek, Peter ;
Chaney, Nathaniel ;
Condon, Laura E. ;
David, Cedric H. ;
de Roo, Ad ;
Doell, Petra ;
Drost, Niels ;
Famiglietti, James S. ;
Floerke, Martina ;
Gochis, David J. ;
Houser, Paul ;
Hut, Rolf ;
Keune, Jessica ;
Kollet, Stefan ;
Maxwell, Reed M. ;
Reager, John T. ;
Samaniego, Luis ;
Sudicky, Edward ;
Sutanudjaja, Edwin H. ;
van de Giesen, Nick ;
Winsemius, Hessel ;
Wood, Eric F. .
HYDROLOGICAL PROCESSES, 2015, 29 (02) :310-320
[10]   Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program [J].
Boryan, Claire ;
Yang, Zhengwei ;
Mueller, Rick ;
Craig, Mike .
GEOCARTO INTERNATIONAL, 2011, 26 (05) :341-358