Spectral clustering of single-cell multi-omics data on multilayer graphs

被引:5
|
作者
Zhang, Shuyi [1 ,2 ]
Leistico, Jacob R. [1 ,2 ]
Cho, Raymond J. [3 ]
Cheng, Jeffrey B. [3 ]
Song, Jun S. [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Calif San Francisco, Dept Dermatol, San Francisco, CA 94107 USA
基金
美国国家卫生研究院;
关键词
DIMENSIONALITY REDUCTION; CUTS;
D O I
10.1093/bioinformatics/btac378
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell sequencing technologies that simultaneously generate multimodal cellular profiles present opportunities for improved understanding of cell heterogeneity in tissues. How the multimodal information can be integrated to obtain a common cell type identification, however, poses a computational challenge. Multilayer graphs provide a natural representation of multi-omic single-cell sequencing datasets, and finding cell clusters may be understood as a multilayer graph partition problem. Results: We introduce two spectral algorithms on multilayer graphs, spectral clustering on multilayer graphs and the weighted locally linear (WLL) method, to cluster cells in multi-omic single-cell sequencing datasets. We connect these algorithms through a unifying mathematical framework that represents each layer using a Hamiltonian operator and a mixture of its eigenstates to integrate the multiple graph layers, demonstrating in the process that the WLL method is a rigorous multilayer spectral graph theoretic reformulation of the popular Seurat weighted nearest neighbor (WNN) algorithm. Implementing our algorithms and applying them to a CITE-seq dataset of cord blood mononuclear cells yields results similar to the Seurat WNN analysis. Our work thus extends spectral methods to multimodal single-cell data analysis.
引用
收藏
页码:3600 / 3608
页数:9
相关论文
共 50 条
  • [1] Clustering single-cell multi-omics data with MoClust
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    BIOINFORMATICS, 2023, 39 (01)
  • [2] scMoC: single-cell multi-omics clustering
    Eltager, Mostafa
    Abdelaal, Tamim
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [3] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Xiang Lin
    Tian Tian
    Zhi Wei
    Hakon Hakonarson
    Nature Communications, 13
  • [4] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Lin, Xiang
    Tian, Tian
    Wei, Zhi
    Hakonarson, Hakon
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [6] Integrating single-cell multi-omics data through self-supervised clustering
    Zeng, Yuansong
    Chen, Jianing
    Pan, Zixiang
    Yu, Weijiang
    Yang, Yuedong
    APPLIED SOFT COMPUTING, 2025, 169
  • [7] Multi-omics single-cell analysis
    Nicole Rusk
    Nature Methods, 2019, 16 : 679 - 679
  • [8] Multi-omics single-cell analysis
    Rusk, Nicole
    NATURE METHODS, 2019, 16 (08) : 679 - 679
  • [9] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Unsupervised manifold alignment for single-cell multi-omics data
    Singh, Ritambhara
    Demetci, Pinar
    Bonora, Giancarlo
    Ramani, Vijay
    Lee, Choli
    Fang, He
    Duan, Zhijun
    Deng, Xinxian
    Shendure, Jay
    Disteche, Christine
    Noble, William Stafford
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,