Global Well-Posedness for the Defocusing, Cubic, Nonlinear Wave Equation in Three Dimensions for Radial Initial Data in <(H)over dot> x <(H)over dot>s-1, s > 1/2
被引:2
作者:
Dodson, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USAJohns Hopkins Univ, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
Dodson, Benjamin
[1
]
机构:
[1] Johns Hopkins Univ, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
SCHRODINGER-EQUATION;
LOCAL EXISTENCE;
ROUGH SOLUTIONS;
SCATTERING;
REGULARITY;
D O I:
10.1093/imrn/rnx323
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we study the defocusing, cubic nonlinear wave equation in three dimensions with radial initial data. The critical space is <(H)over dot>(1/2) x <(H)over dot>(-1/2) . We show that if the initial data is radial and lies in (<(H)over dot>(s) x <(H)over dot>(s-1)) boolean AND (<(H)over dot>(1/2) x <(H)over dot>(-1/2)) for some , then the cubic initial value problem is globally well-posed. The proof utilizes the I-method, long time Strichartz estimates, and local energy decay. This method is quite similar to the method used in [11].