Global Well-Posedness for the Defocusing, Cubic, Nonlinear Wave Equation in Three Dimensions for Radial Initial Data in <(H)over dot> x <(H)over dot>s-1, s > 1/2

被引:2
作者
Dodson, Benjamin [1 ]
机构
[1] Johns Hopkins Univ, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
SCHRODINGER-EQUATION; LOCAL EXISTENCE; ROUGH SOLUTIONS; SCATTERING; REGULARITY;
D O I
10.1093/imrn/rnx323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the defocusing, cubic nonlinear wave equation in three dimensions with radial initial data. The critical space is <(H)over dot>(1/2) x <(H)over dot>(-1/2) . We show that if the initial data is radial and lies in (<(H)over dot>(s) x <(H)over dot>(s-1)) boolean AND (<(H)over dot>(1/2) x <(H)over dot>(-1/2)) for some , then the cubic initial value problem is globally well-posed. The proof utilizes the I-method, long time Strichartz estimates, and local energy decay. This method is quite similar to the method used in [11].
引用
收藏
页码:6797 / 6817
页数:21
相关论文
共 31 条
[1]  
[Anonymous], 1994, Int. Math. Res. Not. IMRN
[2]  
Bahouri H, 2006, INT MATH RES NOTICES, V2006
[3]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[4]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[5]   Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge [J].
Burq, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (9-10) :1675-1683
[6]  
Christ M, 2003, AM J MATH, V125, P1235
[7]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[8]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014
[9]  
Colliander J, 2002, MATH RES LETT, V9, P659
[10]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865