Mining Logs for Long-Term Patterns

被引:0
作者
Novikov, Boris [1 ]
Michailova, Elena [1 ]
Vasilik, Dmitri [1 ]
Ivannikova, Ekaterina [1 ]
Pigul, Alice [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
来源
DATABASES AND INFORMATION SYSTEMS VII | 2013年 / 249卷
关键词
Pattern mining; log mining; period detection; PARTIAL PERIODIC PATTERNS;
D O I
10.3233/978-1-61499-161-8-57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The discovery of high-level long-term system behavior patterns is essential for several tasks such as system analysis, performance tuning, adaptive data placement in a cloud data centers. This paper describes techniques for mining long-term activities from database query logs. We describe algorithms for extraction of query groups with similar occurrence patterns, identification of periodic groups, and experimentally evaluate the correspondence of the query groups with business processes in the system.
引用
收藏
页码:57 / 70
页数:14
相关论文
共 20 条
  • [1] AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415
  • [2] Agrawal R., 1996, ADV KNOWLEDGE DISCOV, V12, P307, DOI DOI 10.1007/978-3-319-31750-2.
  • [3] Agrawal R., P 20 INT C VERY LARG
  • [4] Amir A, 1997, LECT NOTES ARTIF INT, V1263, P221
  • [5] Batal I., 2009, P 22 INT FLOR ART IN
  • [6] Brin S., 1997, P 1997 ACM SIGMOD IN, P265
  • [7] Cao HP, 2004, LECT NOTES ARTIF INT, V3056, P653
  • [8] Periodicity detection in time series databases
    Elfeky, MG
    Aref, WG
    Elmagarmid, AK
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (07) : 875 - 887
  • [9] Gonen Y, 2010, LECT NOTES COMPUT SC, V5981, P63, DOI 10.1007/978-3-642-12026-8_7
  • [10] Efficient mining of partial periodic patterns in time series database
    Han, JW
    Dong, GZ
    Yin, YW
    [J]. 15TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1999, : 106 - 115