Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells

被引:99
|
作者
Fletcher, Rachel S. [1 ,2 ]
Ratajczak, Joanna [3 ,4 ]
Doig, Craig L. [1 ,2 ]
Oakey, Lucy A. [2 ]
Callingham, Rebecca [5 ]
Xavier, Gabriella Da Silva [5 ]
Garten, Antje [1 ,6 ]
Elhassan, Yasir S. [1 ,2 ]
Redpath, Philip [7 ]
Migaud, Marie E. [7 ]
Philp, Andrew [8 ]
Brenner, Charles [9 ]
Canto, Carles [3 ,4 ]
Lavery, Gareth G. [1 ,2 ]
机构
[1] Univ Birmingham, Inst Metab & Syst Res, 2nd Floor IBR Tower, Birmingham B15 2TT, W Midlands, England
[2] Birmingham Hlth Partners, Ctr Endocrinol Diabet & Metab, Birmingham B15 2TH, W Midlands, England
[3] Nestle Inst Hlth Sci NIHS, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[5] Imperial Coll London, Dept Med, Sect Cell Biol & Funct Genom, London W12 0NN, England
[6] Univ Leipzig, Hosp Children & Adolescents, Ctr Pediat Res, Liebigstr 19-21, D-04103 Leipzig, Germany
[7] Mitchell Canc Inst, 1660 Springhill Ave, Mobile, AL 36604 USA
[8] Univ Birmingham, Sch Sport Exercise & Rehabil Sci, Birmingham B15 2TT, W Midlands, England
[9] Univ Iowa, Dept Biochem, Carver Coll Med, Iowa City, IA 52242 USA
来源
MOLECULAR METABOLISM | 2017年 / 6卷 / 08期
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 美国国家卫生研究院; 英国医学研究理事会;
关键词
Skeletal muscle; NAD(+); Energy metabolism; Nicotinamide riboside; NAD(+) PRECURSOR; DIPHOSPHOPYRIDINE NUCLEOTIDE; MITOCHONDRIAL-FUNCTION; INSULIN-SECRETION; ACID RIBOSIDE; BETA-CELLS; SIRT1; BIOSYNTHESIS; PROTECTS; EXERCISE;
D O I
10.1016/j.molmet.2017.05.011
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Augmenting nicotinamide adenine dinucleotide (NAD(+)) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD(+) precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD(+). Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD(+) from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. Methods: We exploited expression profiling of muscle NAD(+) biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD(+) recycling to evaluate NMN and NR utilization. Results: Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD(+). NAMPT inhibition depletes muscle NAD(+) availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD(+) in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD(+) metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD(+). Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD(+) availability. Conclusions: These results identify skeletal muscle cells as requiring NAMPT to maintain NAD(+) availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD(+) availability. (C) 2017 The Authors. Published by Elsevier GmbH.
引用
收藏
页码:819 / 832
页数:14
相关论文
共 50 条
  • [1] NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
    Ratajczak, Joanna
    Joffraud, Magali
    Trammell, Samuel A. J.
    Ras, Rosa
    Canela, Nuria
    Boutant, Marie
    Kulkarni, Sameer S.
    Rodrigues, Marcelo
    Redpath, Philip
    Migaud, Marie E.
    Auwerx, Johan
    Yanes, Oscar
    Brenner, Charles
    Canto, Carles
    NATURE COMMUNICATIONS, 2016, 7
  • [2] NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
    Joanna Ratajczak
    Magali Joffraud
    Samuel A. J. Trammell
    Rosa Ras
    Núria Canela
    Marie Boutant
    Sameer S. Kulkarni
    Marcelo Rodrigues
    Philip Redpath
    Marie E. Migaud
    Johan Auwerx
    Oscar Yanes
    Charles Brenner
    Carles Cantó
    Nature Communications, 7
  • [3] Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside
    Mateuszuk, Lukasz
    Campagna, Roberto
    Kutryb-Zajac, Barbara
    Kus, Kamil
    Slominska, Ewa M.
    Smolenski, Ryszard T.
    Chlopicki, Stefan
    BIOCHEMICAL PHARMACOLOGY, 2020, 178
  • [4] ACTION OF NUCLEOTIDE PHOSPHOTRANSFERASE OF ESCHERICHIA-COLI ON NICOTINAMIDE RIBOSIDE AND NICOTINAMIDE MONONUCLEOTIDE
    BRUNNGRABER, EF
    CHARGAFF, E
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (10) : 4160 - 4162
  • [5] Synthesis of methylene-bridged analogues of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide.
    Lipka, P
    Zatorski, A
    Watanabe, KA
    Pankiewicz, KW
    NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 1996, 15 (1-3): : 149 - 167
  • [6] The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism
    Fletcher, Rachel S.
    Lavery, Gareth G.
    JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2018, 61 (03) : R107 - R121
  • [7] Comparison of protective effects of nicotinamide mononucleotide and nicotinamide riboside on DNA damage induced by cisplatin in HeLa cells
    Qiu, Shuting
    Shao, Shihan
    Zhang, Yunheng
    Zhang, Yingying
    Yin, Jie
    Hong, Yu
    Yang, Jun
    Tan, Xiaohua
    Di, Chunhong
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2024, 37
  • [8] Nicotinamide riboside and nicotinamide mononucleotide facilitate NAD+ synthesis via enterohepatic circulation
    Yaku, Keisuke
    Palikhe, Sailesh
    Iqbal, Tooba
    Hayat, Faisal
    Watanabe, Yoshiyuki
    Fujisaka, Shiho
    Izumi, Hironori
    Yoshida, Tomoyuki
    Karim, Mariam
    Uchida, Hitoshi
    Nawaz, Allah
    Tobe, Kazuyuki
    Mori, Hisashi
    Migaud, Marie E.
    Nakagawa, Takashi
    SCIENCE ADVANCES, 2025, 11 (12):
  • [9] PHOSPHOROLYSIS OF NICOTINAMIDE RIBOSIDE
    ROWEN, JW
    KORNBERG, A
    FEDERATION PROCEEDINGS, 1951, 10 (01) : 240 - 241
  • [10] NICOTINAMIDE RIBOSIDE PHOSPHORYLASE
    KORNBERG, A
    METHODS IN ENZYMOLOGY, 1955, 2 : 454 - 456