Anomalous Piezoresistance Effect in Ultrastrained Silicon Nanowires

被引:100
作者
Lugstein, A. [1 ]
Steinmair, M. [1 ]
Steiger, A. [2 ]
Kosina, H. [3 ]
Bertagnolli, E. [1 ]
机构
[1] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Nanowire; strained silicon; piezoresitivity; mobility; STRAINED-SI; CARRIER MOBILITY; BAND-STRUCTURE; DEFORMATION; FRACTURE; GROWTH; GE;
D O I
10.1021/nl102179c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we demonstrate that under ultrahigh strain conditions p-type single crystal silicon nanowires possess an anomalous piezoresistance effect. The measurements were performed on vapor-liquid-solid (VLS) grown Si nanowires, monolithically integrated in a microelectro-mechanical loading module. The special setup enables the application of pure uniaxial tensile strain along the < 111 > growth direction of individual, 100 nm thick Si nanowires while simultaneously measuring the resistance of the nanowires. For low strain levels (nanowire elongation less than 0.8%), our measurements revealed the expected positive piezoresistance effect, whereas for ultrahigh strain levels a transition to anomalous negative piezoresistance was observed. For the maximum tensile strain of 3.5% the resistance of the Si nanowires decreased by a factor of 10. Even at these high strain amplitudes, no fatigue failures are observed for several hundred loading cycles. The ability to fabricate single-crystal nanowires that are widely free of structural defects will it make possible to apply high strain without fracturing to other materials as well, therefore in any application where crystallinity and strain are important, the idea of making nanowires should be of a high value.
引用
收藏
页码:3204 / 3208
页数:5
相关论文
共 38 条
[1]   Asymmetric strain relaxation in patterned SiGe layers:: A means to enhance carrier mobilities in Si cap layers [J].
Buca, D. ;
Hollaender, B. ;
Feste, S. ;
Lenk, St. ;
Trinkaus, H. ;
Mantl, S. ;
Loo, R. ;
Caymax, M. .
APPLIED PHYSICS LETTERS, 2007, 90 (03)
[2]   SPIN-ORBIT-COUPLING EFFECTS ON THE VALENCE-BAND STRUCTURE OF STRAINED SEMICONDUCTOR QUANTUM-WELLS [J].
CHAO, CYP ;
CHUANG, SL .
PHYSICAL REVIEW B, 1992, 46 (07) :4110-4122
[3]   Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing [J].
Chidambaram, PR ;
Bowen, C ;
Chakravarthi, S ;
Machala, C ;
Wise, R .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (05) :944-964
[4]  
Chidambaram PR, 2004, 2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P48
[5]  
CRADDOCK R, 1993, IEEE C PUBL, V191
[6]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[7]   Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys [J].
Fischetti, MV ;
Laux, SE .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (04) :2234-2252
[8]   On the enhanced electron mobility in strained-silicon inversion layers [J].
Fischetti, MV ;
Gámiz, F ;
Hänsch, W .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7320-7324
[9]  
Ghani T., 2003, IEEE International Electron Devices Meeting 2003, p11.6.1, DOI 10.1109/IEDM.2003.1269442
[10]  
Ghani T, 2003, 2003 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, TECHNICAL DIGEST, P978