Complex Dynamical Behaviors of a Fractional-Order System Based on a Locally Active Memristor

被引:12
作者
Yu, Yajuan [1 ]
Bao, Han [2 ]
Shi, Min [3 ]
Bao, Bocheng [4 ]
Chen, Yangquan [5 ]
Chen, Mo [4 ]
机构
[1] Changzhou Univ, Aliyun Sch Big Data, Changzhou 213164, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210042, Jiangsu, Peoples R China
[4] Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Peoples R China
[5] Univ Calif Merced, Sch Engn, Mechatron Embedded Syst & Automat Lab, Merced, CA 95343 USA
关键词
MULTIPLE ATTRACTORS; ACTIVITY DOMAIN; CHAOS; STABILITY; EDGE;
D O I
10.1155/2019/2051053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fractional-order locally active memristor is proposed in this paper. When driven by a bipolar periodic signal, the generated hysteresis loop with two intersections is pinched at the origin. The area of the hysteresis loop changes with the fractional order. Based on the fractional-order locally active memristor, a fractional-order memristive system is constructed. The stability analysis is carried out and the stability conditions for three equilibria are listed. The expression of the fractional order related to Hopf bifurcation is given. The complex dynamical behaviors of Hopf bifurcation, period-doubling bifurcation, bistability and chaos are shown numerically. Furthermore, the bistability behaviors of the different fractional order are validated by the attraction basins in the initial value plane. As an alternative to validating our results, the fractional-order memristive system is implemented by utilizing Simulink of MATLAB. The research results clarify that the complex dynamical behaviors are attributed to two facts: one is the fractional order that affects the stability of the equilibria, and the other is the local activeness of the fractional-order memristor.
引用
收藏
页数:13
相关论文
共 39 条
  • [1] NONSMOOTH BIFURCATIONS, TRANSIENT HYPERCHAOS AND HYPERCHAOTIC BEATS IN A MEMRISTIVE MURALI-LAKSHMANAN-CHUA CIRCUIT
    Ahamed, A. Ishaq
    Lakshmanan, M.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (06):
  • [2] Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models
    Ahmed, E.
    El-Sayed, A. M. A.
    El-Saka, H. A. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 542 - 553
  • [3] Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit
    Alombah, N. Henry
    Fotsin, Hilaire
    Ngouonkadi, E. B. Megam
    Nguazon, Tekou
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (08):
  • [4] Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator
    Bao, B. C.
    Wu, P. Y.
    Bao, H.
    Xu, Q.
    Chen, M.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 161 - 170
  • [5] Extreme multistability in a memristive circuit
    Bao, Bo-Cheng
    Xu, Quan
    Bao, Han
    Chen, Mo
    [J]. ELECTRONICS LETTERS, 2016, 52 (12) : 1008 - 1009
  • [6] Three-Dimensional Memristive Hindmarsh-Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors
    Bao, Bocheng
    Hu, Aihuang
    Bao, Han
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    [J]. COMPLEXITY, 2018,
  • [7] Coexisting infinitely many attractors in active band-pass filter-based memristive circuit
    Bao, Bocheng
    Jiang, Tao
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    Hu, Yihua
    [J]. NONLINEAR DYNAMICS, 2016, 86 (03) : 1711 - 1723
  • [8] The four-element Chua's circuit
    Barboza, Ruy
    Chua, Leon O.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (04): : 943 - 955
  • [9] Interpreting area of pinched memristor hysteresis loop
    Biolek, D.
    Biolek, Z.
    Biolkova, V.
    [J]. ELECTRONICS LETTERS, 2014, 50 (02) : 74 - 75
  • [10] On the simplest fractional-order memristor-based chaotic system
    Cafagna, Donato
    Grassi, Giuseppe
    [J]. NONLINEAR DYNAMICS, 2012, 70 (02) : 1185 - 1197