On anisotropic order parameter models for multi-phase systems and their sharp interface limits

被引:115
作者
Garcke, H
Nestler, B
Stoth, B
机构
[1] Inst Angew Math, D-53115 Bonn, Germany
[2] RWTH Aachen, Foundry Inst, D-52072 Aachen, Germany
关键词
phase-field models; multi-phase diffusion; Allen-Cahn systems; Cahn-Hilliard systems; matched asymptotic expansions; triple junction dynamics; anisotropy;
D O I
10.1016/S0167-2789(97)00227-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general class of diffuse anisotropic multi-phase order parameter (or phase-field) models we use formally matched asymptotic expansions to determine the asymptotic limit when a small parameter related to the thickness of the interface tends to zero. In the case of anisotropic Allen-Cahn systems we obtain in the limit that the interface moves by anisotropic mean curvature flow, At triple junctions a force balance holds which in the anisotropic case includes shear forces (Herring torque terms) acting normal to the interface. We further identify the singular limit of anisotropic Cahn-Hilliard systems. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:87 / 108
页数:22
相关论文
共 43 条
[1]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[2]   A MATHEMATICAL-MODEL OF DYNAMICS OF NONISOTHERMAL PHASE-SEPARATION [J].
ALT, HW ;
PAWLOW, I .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 59 (04) :389-416
[3]   ANISOTROPIC SINGULAR PERTURBATIONS - THE VECTORIAL CASE [J].
BARROSO, AC ;
FONSECA, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :527-571
[4]   ON 3-PHASE BOUNDARY MOTION AND THE SINGULAR LIMIT OF A VECTOR-VALUED GINZBURG-LANDAU EQUATION [J].
BRONSARD, L ;
REITICH, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :355-379
[5]  
Bronsard L, 1996, COMMUN PUR APPL MATH, V49, P677, DOI 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO
[6]  
2-6
[7]  
BRONSARD L, 1996, 472 SFB U BONN
[8]   DYNAMICS OF LAYERED INTERFACES ARISING FROM PHASE BOUNDARIES [J].
CAGINALP, G ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :506-518
[9]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267