GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells

被引:26
作者
Shahid, Gulnar [1 ]
Hussain, Tahir [1 ]
机构
[1] Univ Houston, Dept Pharmacol & Pharmaceut Sci, Houston, TX 77204 USA
关键词
D O I
10.1074/jbc.M700744200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G-protein-coupled receptor (GPCR) kinases (GRKs) are serine/threonine kinases that desensitize agonist-occupied classical GPCRs. Although the insulin receptor (IR) is a tyrosine kinase receptor, the IR also couples to G-proteins and utilizes G-protein signaling components. The present study was designed to test the hypothesis that GRK2 negatively regulates IR signaling. FL83B cells, derived from mouse liver, were treated with insulin and membrane translocation of GRK2 was determined using immunofluoresecence and Western blotting. Insulin caused an increase in the translocation of GRK-2 from cytosol to the plasma membrane. To determine the role of GRK2 in IR signaling, GRK2 was selectively down-regulated (similar to by 90%) in FL83B cells using a small interfering RNA technique. Basal as well as insulin-induced glycogen synthesis ( measured by D-[(UC)-C-14] glucose incorporation) was increased in GRK2-deficient cells compared with control cells. Similarly, GRK2 deficiency increased the basal and insulin-stimulated phosphorylation of Ser(21) in glycogen synthase kinase-3 alpha. Insulin-induced tyrosine phosphorylation of the IR was similar in control and GRK2-deficient cells. Basal and insulin-stimulated phosphorylation of Tyr(612) in insulin receptor subunit 1 was significantly increased while phosphorylation of Ser(307) was decreased in GRK2-deficient FL83B cells compared with control cells. Chronic insulin treatment ( 24 h) in control cells caused an increase in GRK2 (56%) and a decrease in IR (50%) expression associated with the absence of an increase in glycogen synthesis, suggesting impairment of IR function. However, chronic insulin treatment (24 h) did not decrease IR expression or impair IR effects on glycogen synthesis in GRK2-deficient cells. We conclude that (i) GRK2 negatively regulates basal and insulin-stimulated glycogen synthesis via a post-IR signaling mechanism, and (ii) GRK2 may contribute to reduced IR expression and function during chronic insulin exposure.
引用
收藏
页码:20612 / 20620
页数:9
相关论文
共 33 条
[1]   Insulin signal transduction through protein kinase cascades [J].
Avruch, J .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1998, 182 (1-2) :31-48
[2]   Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes [J].
Bouzakri, K ;
Roques, M ;
Gual, P ;
Espinosa, S ;
Guebre-Egziabher, F ;
Riou, JP ;
Laville, M ;
Le Marchand-Brustel, Y ;
Tanti, JF ;
Vidal, H .
DIABETES, 2003, 52 (06) :1319-1325
[3]   Selective regulation of Gαq/11 by an RGS domain in the G protein-coupled receptor kinase, GRK2 [J].
Carman, CV ;
Parent, JL ;
Day, PW ;
Pronin, AN ;
Sternweis, PM ;
Wedegaertner, PB ;
Gilman, AG ;
Benovic, JL ;
Kozasa, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (48) :34483-34492
[4]   Endocytosis of G protein-coupled receptors:: roles of G protein-coupled receptor kinases and β-arrestin proteins [J].
Claing, A ;
Laporte, SA ;
Caron, MG ;
Lefkowitz, RJ .
PROGRESS IN NEUROBIOLOGY, 2002, 66 (02) :61-79
[5]   Tyr612 and Tyr632 in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells [J].
Esposito, DL ;
Li, YH ;
Cama, A ;
Quon, MJ .
ENDOCRINOLOGY, 2001, 142 (07) :2833-2840
[6]   Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A [J].
Fang, XJ ;
Yu, SX ;
Lu, YL ;
Bast, RC ;
Woodgett, JR ;
Mills, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11960-11965
[7]   Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta(2)-adrenergic receptor [J].
Fredericks, ZL ;
Pitcher, JA ;
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13796-13803
[8]   Insulin resistance in adipocytes after downregulation of G(i) subtypes [J].
Green, A ;
Walters, DJA ;
Belt, SE .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1997, 273 (02) :E254-E261
[9]   Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation [J].
Greene, MW ;
Garofalo, RS .
BIOCHEMISTRY, 2002, 41 (22) :7082-7091
[10]   THE SPECIFIC PROTEIN PHOSPHATASE INHIBITOR OKADAIC ACID DIFFERENTIALLY MODULATES INSULIN ACTION [J].
HESS, SL ;
SUCHIN, CR ;
SALTIEL, AR .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1991, 45 (04) :374-380