Poset Ramsey Numbers for Boolean Lattices

被引:7
|
作者
Lu, Linyuan [1 ]
Thompson, Joshua C. [1 ]
机构
[1] Univ South Carolina, Columbia, SC 29208 USA
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2022年 / 39卷 / 02期
关键词
Ramsey; Poset; Embeddings; Boolean lattice; Boolean algebra; ALGEBRAS;
D O I
10.1007/s11083-021-09557-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each positive integer n, let Q(n) denote the Boolean lattice of dimension n. For posets P, P', define the poset Ramsey number R(P, P') to be the least N such that for any red/blue coloring of the elements of Q(N), there exists either a subposet isomorphic to P with all elements red, or a subposet isomorphic to P' with all elements blue. Axenovich and Walzer introduced this concept in Order (2017), where they proved R(Q(2), Q(n)) <= 2n + 2 and R(Q(n), Q(m)) <= mn + n + m. They later proved 2n <= R(Q(n), Q(n)) <= n(2) + 2n. Walzer later proved R(Q(n), Q(n)) <= n(2)+1. We provide some improved bounds for R(Q(n), Q(m)) for various n, m is an element of N. In particular, we prove that R(Q(n), Q(n)) <= n(2) - n + 2, R(Q(2), Q(n)) <= 5/3 n + 2, and R(Q(3), Q(n)) <= inverted right perpendicular37/16n + 55/16inverted left perpendicular. We also prove that R(Q(2), Q(3)) = 5, and R(Q(m), Q(n)) <= inverted right perpendicular(m - 1 + 2/m+1) n + 1/3 m + 2inverted left perpendicular for all n > m >= 4.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [21] The Numbers of Shared Upper Bounds Determine a Poset
    Miranca Fischermann
    Werner Knoben
    Dirk Kremer
    Dieter Rautenbach
    Order, 2004, 21 : 131 - 135
  • [22] Partitioning Boolean lattices into antichains
    Elzobi, M
    Lonc, Z
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 45 - 55
  • [23] The median function on Boolean lattices
    Ortega, Oscar
    Garcia-Martinez, C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (04)
  • [24] Algebraic lattices and Boolean algebras
    Jayaram, C.
    ALGEBRA UNIVERSALIS, 2006, 55 (2-3) : 297 - 303
  • [25] On Boolean Lattices of Module Classes
    Alvarado-Garcia, Alejandro
    Cejudo-Castilla, Cesar
    Alberto Rincon-Mejia, Hugo
    Fernando Vilchis-Montalvo, Ivan
    Gerardo Zorrilla-Noriega, Manuel
    ALGEBRA COLLOQUIUM, 2018, 25 (02) : 285 - 294
  • [26] Ramsey numbers for degree monotone paths
    Caro, Yair
    Yuster, Raphael
    Zarb, Christina
    DISCRETE MATHEMATICS, 2017, 340 (02) : 124 - 131
  • [27] Constrained Ramsey Numbers for Rainbow Matching
    Lo, Allan Siu Lun
    JOURNAL OF GRAPH THEORY, 2011, 67 (02) : 91 - 95
  • [28] Some Bistar Bipartite Ramsey Numbers
    Johannes H. Hattingh
    Ernst J. Joubert
    Graphs and Combinatorics, 2014, 30 : 1175 - 1181
  • [29] Exceptional sequences in semidistributive lattices and the poset topology of wide subcategories
    Barnard, Emily
    Hanson, Eric J.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [30] Some Bistar Bipartite Ramsey Numbers
    Hattingh, Johannes H.
    Joubert, Ernst J.
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1175 - 1181