A novel interval type-2 fuzzy Kalman filtering and tracking of experimental data

被引:0
作者
Gomes, Daiana Caroline dos Santos [1 ]
de Oliveira Serra, Ginalber Luiz [2 ]
机构
[1] Univ Fed Maranhao, Av Portugueses 1966, BR-65080805 Sao Luis, Maranhao, Brazil
[2] Fed Inst Educ Sci & Technol Maranhao, Elect Elect Dept, Av Getulio Vargas 04, BR-65030005 Sao Luis, Maranhao, Brazil
关键词
Systems identification; Interval type-2 fuzzy systems; Recursive parametric estimation; Kalman filtering; LOGIC SYSTEMS; IDENTIFICATION; METHODOLOGY; COVID-19; OBSERVER;
D O I
10.1007/s12530-021-09381-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a methodology for design of fuzzy Kalman filter, using interval type-2 fuzzy models, in discrete time domain, via spectral decomposition of experimental data, is proposed. The adopted methodology consists of recursive parametric estimation of local state space linear submodels of interval type-2 fuzzy Kalman filter for tracking and forecasting of the dynamics inherited to experimental data, using an interval type-2 fuzzy version of Observer/Kalman Filter Identification (OKID) algorithm. The partitioning of the experimental data is performed by interval type-2 fuzzy Gustafson-Kessel clustering algorithm. The interval Kalman gains in the consequent proposition of interval type-2 fuzzy Kalman filter are updated according to unobservable components computed by recursive spectral decomposition of experimental data. Computational results illustrate the efficiency of proposed methodology for filtering and tracking the time delayed state variables of Chen's chaotic attractor in a noisy environment, and experimental results illustrate its applicability for adaptive and real time forecasting the dynamic spread behavior of novel Coronavirus 2019 (COVID-19) outbreak in Brazil.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 56 条
  • [1] [Anonymous], 1991, SPRINGER TEXTS ELECT, DOI DOI 10.1007/978-1-4612-0957-7_13
  • [2] Fuzzy-Based Parameter Optimization of Adaptive Unscented Kalman Filter: Methodology and Experimental Validation
    Asl, Reza Mohammadi
    Palm, Rainer
    Wu, Huapeng
    Handroos, Heikki
    [J]. IEEE ACCESS, 2020, 8 : 54887 - 54904
  • [3] Astolfi A, 2020, ENCY SYSTEMS CONTROL, P1, DOI [10.1007/978-1-4471-5102-9_193-2, DOI 10.1007/978-1-4471-5102-9_193-2]
  • [4] Babuska R, 1998, INT SER INTELL TECHN
  • [5] Bendat, 1998, NONLINEAR SYSTEM TEC
  • [6] Berger JO, 1993, STAT DECISION THEORY
  • [7] Analysis of Stability, Local Convergence, and Transformation Sensitivity of a Variant of the Particle Swarm Optimization Algorithm
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (03) : 370 - 385
  • [8] Interval-valued membership function estimation for fuzzy modeling
    Bouhentala, Moufid
    Ghanai, Mouna
    Chafaa, Kheireddine
    [J]. FUZZY SETS AND SYSTEMS, 2019, 361 : 101 - 113
  • [9] Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems
    Boutayeb, M
    Rafaralahy, H
    Darouach, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (04) : 581 - 586
  • [10] A New Variable Forgetting Factor-Based Bias-Compensation Algorithm for Recursive Identification of Time-Varying Multi-Input Single-Output Systems With Measurement Noise
    Chan, Shing-Chow
    Lin, Jian-Qiang
    Sun, Xu
    Tan, Hai-Jun
    Xu, Wei-Chao
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) : 4555 - 4568