Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning

被引:49
作者
Van de Looverbosch, Tim [1 ]
Raeymaekers, Ellen [1 ]
Verboven, Pieter [1 ]
Sijbers, Jan [2 ]
Nicolai, Bart [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Biosyst Dept, Mechatron Biostat & Sensors MeBioS, Leuven, Belgium
[2] Univ Antwerp, Dept Phys, Imec Vis Lab, Antwerp, Belgium
[3] Flanders Ctr Postharvest Biol, Heverlee, Belgium
关键词
Postharvest technology; Food quality inspection; Fresh commodity sorting; Computed tomography; Artificial intelligence; Image Processing; FRUIT;
D O I
10.1016/j.eswa.2021.114925
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long term storage is required to deliver high quality pear fruit year-round. Under suboptimal storage conditions, internal disorders, such as internal browning and cavity formation, can develop and are often invisible from the outside. We present a non-destructive inspection method to quantify internal disorders in X-ray CT scans of pear fruit using a deep neural network for semantic segmentation. Herein, a U-net based model was trained to automatically indicate healthy tissue, core and regions affected by internal disorders, i.e., cavity formation and internal browning. The quantitative data resulting from the segmentations was used to measure the severity of internal disorders. Excellent classification accuracies of 99.4 and 92.2% were obtained for the classification of ?consumable? vs ?non-consumable? fruit on the one hand and ?healthy? vs ?defect but consumable? vs ?nonconsumable? fruit on the other hand. The identification of ?defect but consumable? fruit showed to be the most difficult.
引用
收藏
页数:12
相关论文
共 46 条
[1]   Inline discrete tomography system: Application to agricultural product inspection [J].
Alves Pereira, Luis F. ;
Janssens, Eline ;
Cavalcanti, George D. C. ;
Ren, Tsang Ing ;
Van Dael, Mattias ;
Verboven, Pieter ;
Nicolai, Bart ;
Sijbers, Jan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 138 :117-126
[2]  
[Anonymous], MATLAB
[3]   Artifacts in CT: Recognition and avoidance [J].
Barrett, JF ;
Keat, N .
RADIOGRAPHICS, 2004, 24 (06) :1679-1691
[4]   'Fuji' apple internal browning explored via X-ray computed tomography (CT) [J].
Chigwaya, K. ;
Schoeman, L. ;
Fourie, W. J. ;
Crouch, I. ;
Viljoen, D. ;
Crouch, E. M. .
VII INTERNATIONAL CONFERENCE ON MANAGING QUALITY IN CHAINS (MQUIC2017) AND II INTERNATIONAL SYMPOSIUM ON ORNAMENTALS IN ASSOCIATION WITH XIII INTERNATIONAL PROTEA RESEARCH SYMPOSIUM, 2018, 1201 :309-316
[5]  
Cicek O., 2016, INT C MED IM COMP CO, P424, DOI DOI 10.1007/978-3-319-46723-8_492
[6]   In-line NDT with X-Ray CT combining sample rotation and translation [J].
De Schryver, Thomas ;
Dhaene, Jelle ;
Dierick, Manuel ;
Boone, Matthieu N. ;
Janssens, Eline ;
Sijbers, Jan ;
van Dael, Mattias ;
Verboven, Pieter ;
Nicolai, Bart ;
Van Hoorebeke, Luc .
NDT & E INTERNATIONAL, 2016, 84 :89-98
[7]   Assessment of bruise volumes in apples using X-ray computed tomography [J].
Diels, Elien ;
van Dael, Mattias ;
Keresztes, Janos ;
Vanmaercke, Simon ;
Verboven, Pieter ;
Nicolai, Bart ;
Saeys, Wouter ;
Ramon, Herman ;
Smeets, Bart .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2017, 128 :24-32
[8]  
Edwards M., 2004, Detecting Foreign Bodies in Food
[9]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[10]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341