Industrially microfabricated ion trap with 1 eV trap depth

被引:14
作者
Auchter, S. [1 ,2 ]
Axline, C. [3 ]
Decaroli, C. [3 ]
Valentini, M. [1 ]
Purwin, L. [2 ]
Oswald, R. [3 ]
Matt, R. [3 ]
Aschauer, E. [2 ]
Colombe, Y. [2 ]
Holz, P. [4 ]
Monz, T. [1 ,4 ]
Blatt, R. [1 ,4 ,5 ]
Schindler, P. [1 ]
Roessler, C. [2 ]
Home, J. [3 ]
机构
[1] Univ Innsbruck, Inst Experimentalphys, Technikerstr 25, A-6020 Innsbruck, Austria
[2] Infineon Technol Austria AG, Siemensstr 2, A-9500 Villach, Austria
[3] Swiss Fed Inst Technol, Inst Quantenelekt, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
[4] Alpine Quantum Technol GmbH, Technikerstr 17-1, A-6020 Innsbruck, Austria
[5] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Technikerstr 21 A, A-6020 Innsbruck, Austria
关键词
ion trap technology; industrial microfabrication; ion trap characterization; quantum computing; micro-electro-mechanical systems; scalable technology; QUANTUM; ARCHITECTURE;
D O I
10.1088/2058-9565/ac7072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling trapped-ion quantum computing will require robust trapping of at least hundreds of ions over long periods, while increasing the complexity and functionality of the trap itself. Symmetric three-dimensional (3D) structures enable high trap depth, but microfabrication techniques are generally better suited to planar structures that produce less ideal conditions for trapping. We present an ion trap fabricated on stacked eight-inch wafers in a large-scale micro-electro-mechanical system microfabrication process that provides reproducible traps at a large volume. Electrodes are patterned on the surfaces of two opposing wafers bonded to a spacer, forming a 3D structure with 2.5 mu m standard deviation in alignment across the stack. We implement a design achieving a trap depth of 1 eV for a Ca-40(+) ion held at 200 mu m from either electrode plane. We characterize traps, achieving measurement agreement with simulations to within +/- 5% for mode frequencies spanning 0.6-3.8 MHz, and evaluate stray electric field across multiple trapping sites. We measure motional heating rates over an extensive range of trap frequencies, and temperatures, observing 40 phonons/s at 1 MHz and 185 K. This fabrication method provides a highly scalable approach for producing a new generation of 3D ion traps.
引用
收藏
页数:18
相关论文
共 90 条
[1]   Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap [J].
Allcock, D. T. C. ;
Harty, T. P. ;
Janacek, H. A. ;
Linke, N. M. ;
Ballance, C. J. ;
Steane, A. M. ;
Lucas, D. M. ;
Jarecki, R. L., Jr. ;
Habermehl, S. D. ;
Blain, M. G. ;
Stick, D. ;
Moehring, D. L. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 107 (04) :913-919
[2]   Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect [J].
Allcock, D. T. C. ;
Sherman, J. A. ;
Stacey, D. N. ;
Burrell, A. H. ;
Curtis, M. J. ;
Imreh, G. ;
Linke, N. M. ;
Szwer, D. J. ;
Webster, S. C. ;
Steane, A. M. ;
Lucas, D. M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[3]   Toward scalable ion traps for quantum information processing [J].
Amini, J. M. ;
Uys, H. ;
Wesenberg, J. H. ;
Seidelin, S. ;
Britton, J. ;
Bollinger, J. J. ;
Leibfried, D. ;
Ospelkaus, C. ;
VanDevender, A. P. ;
Wineland, D. J. .
NEW JOURNAL OF PHYSICS, 2010, 12
[4]  
[Anonymous], SCHOTT AG 2022 MEMPA
[5]  
[Anonymous], IOFFE I 2022 SILICON
[6]  
Ballance C. J., 2017, HIGH FIDELITY QUANTU
[7]   Hybrid MEMS-CMOS ion traps for NISQ computing [J].
Blain, M. G. ;
Haltli, R. ;
Maunz, P. ;
Nordquist, C. D. ;
Revelle, M. ;
Stick, D. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
[8]   Near-ground-state transport of trapped-ion qubits through a multidimensional array [J].
Blakestad, R. B. ;
Ospelkaus, C. ;
VanDevender, A. P. ;
Wesenberg, J. H. ;
Biercuk, M. J. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[9]   High-Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array [J].
Blakestad, R. B. ;
Ospelkaus, C. ;
VanDevender, A. P. ;
Amini, J. M. ;
Britton, J. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (15)
[10]  
Blakestad RB., 2010, THESIS