Control of Melt Flow and Oxygen Distribution Using Traveling Magnetic Field during Directional Solidification of Silicon Ingots

被引:8
作者
Shao, Yue [1 ]
Li, Zaoyang [1 ]
Yu, Qinghua [2 ,3 ]
Liu, Lijun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Univ Birmingham, Sch Chem Engn, Birmingham Ctr Energy Storage, Birmingham B15 2TT, W Midlands, England
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Crystalline silicon ingots; Directional solidification; Traveling magnetic field; Melt flow; Oxygen impurity; HEAT-TRANSFER; MULTICRYSTALLINE SILICON; INTERFACE SHAPE; TRANSPORT; GROWTH; SIMULATIONS; CONVECTION; PARAMETER;
D O I
10.1007/s12633-019-00339-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Traveling magnetic field (TMF) is a potential method to control the melt flow and impurity transport during the directional solidification (DS) of silicon ingots. We numerically study the control mechanism of a downward and an upward TMF with different frequencies on the silicon melt flow and oxygen distribution in the DS process. Model experiment of generation and measurement of a TMF is first carried out to validate the magnetic field computing program. Then, the TMF frequency is varied to study its influence on the direction and magnitude of Lorentz force, pattern and intensity of silicon melt flow, and distribution of oxygen impurity. Results show that the downward TMF with large frequency can induce local melt flow above the melt-crystal interface and block the oxygen transport from the dominant flow to the interface. The upward TMF with small frequency and large amplitude can induce thoroughly upward melt flow along the crucible side wall and take the oxygen far away from the melt-crystal interface, which is better for reducing the oxygen content in the silicon melt and ingots.
引用
收藏
页码:2395 / 2404
页数:10
相关论文
共 18 条
[1]   Unsteady coupled 3D calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field [J].
Dadzis, K. ;
Vizman, D. ;
Friedrich, J. .
JOURNAL OF CRYSTAL GROWTH, 2013, 367 :77-87
[2]   Model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field [J].
Dadzis, K. ;
Ehrig, J. ;
Niemietz, K. ;
Paetzold, O. ;
Wunderwald, U. ;
Friedrich, J. .
JOURNAL OF CRYSTAL GROWTH, 2011, 333 (01) :7-15
[3]   Numerical study on transport phenomena in a directional solidification process in the presence of travelling magnetic fields [J].
Dropka, Natasha ;
Miller, Wolfram ;
Menzel, Robert ;
Rehse, Uwe .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (08) :1407-1410
[4]   Global simulation of an RF Czochralski furnace during different stages of germanium single crystal growth [J].
Honarmandnia, M. ;
Tavakoli, M. H. ;
Sadeghi, H. .
CRYSTENGCOMM, 2016, 18 (21) :3942-3948
[5]   Oxygen and Carbon Distribution in 80Kg Multicrystalline Silicon Ingot [J].
Kerkar, Fouad ;
Kheloufi, Abdelkrim ;
Dokhan, Nahed ;
Ouadjaout, Djamel ;
Belhousse, Samia ;
Medjahed, Sidali ;
Meribai, Nadjib ;
Laib, Karim .
SILICON, 2020, 12 (03) :473-478
[6]   Characterization of mc-Si directionally solidified in travelling magnetic fields [J].
Kiessling, F. -M. ;
Buellesfeld, F. ;
Dropka, N. ;
Frank-Rotsch, Ch. ;
Mueller, M. ;
Rudolph, P. .
JOURNAL OF CRYSTAL GROWTH, 2012, 360 :81-86
[7]   Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module [J].
Kudla, Ch ;
Blumenau, A. T. ;
Buellesfeld, F. ;
Dropka, N. ;
Frank-Rotsch, Ch ;
Kiessling, F. ;
Klein, O. ;
Lange, P. ;
Miller, W. ;
Rehse, U. ;
Sahr, U. ;
Schellhorn, M. ;
Weidemann, G. ;
Ziem, M. ;
Bethin, G. ;
Fornari, R. ;
Mueller, M. ;
Sprekels, J. ;
Trautmann, V. ;
Rudolph, P. .
JOURNAL OF CRYSTAL GROWTH, 2013, 365 :54-58
[8]  
Lan CW, 2015, HDB CRYSTAL GROWTH A, V2A, P381
[9]   Role of marangoni tension effects on the melt convection in directional solidification process for multi-crystalline silicon ingots [J].
Li, Zaoyang ;
Liu, Lijun ;
Nan, Xiaohong ;
Kakimoto, Koichi .
JOURNAL OF CRYSTAL GROWTH, 2012, 346 (01) :40-44
[10]   Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model [J].
Liu, LJ ;
Kakimoto, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (21-22) :4481-4491