Stabilization in large of an inverted pendulum

被引:0
作者
Gabasov, R
Kirillova, FM
Ruzhitskaya, EA
Furuta, K
机构
[1] Belarussian Acad Sci, Math Inst, Minsk 220012, BELARUS
[2] Belarusian State Univ, Minsk 220080, BELARUS
[3] Gomel State Univ, Gomel, BELARUS
[4] Tokyo Inst Technol, Tokyo 152, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of constructing a bounded feedback for the steering of a pendulum with the help of horizontal movements of the suspension. point from the bottom stable position to the top unstable position (swing-up control) and its stabilization at the new position are considered. To solve these problems, we use the positional solution of the auxiliary problem of optimal control, which ensures the motion and stabilization of the pendulum at the top position. The results of numerical experiments are presented.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1966, TEORIYA USTOICHIVOST
[2]  
ASTROM KJ, 1996, P 13 TRIENN WORLD C
[3]  
BALASHEVICH NV, 2000, ZH VYCH MAT MAT FIZ, V40
[4]  
CHETAEV NG, 1951, PRIKL MAT MEKH, V15
[5]  
FURUTA K, 1992, J SYST CONTROL ENG, V206
[6]   On the synthesis problem for optimal control systems [J].
Gabasov, R ;
Kirillova, FM ;
Balashevich, NV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) :1008-1042
[7]  
GABASOV R, 1998, NONSMOOTH DISCONTINU
[8]  
GABASOV R, 2000, DOKL NAN BELARUSI, V44
[9]  
GABASOV R, 2001, P WORKSH FAST SOL DI, V138
[10]  
GABASOV R, 1998, KONSTRUKTIVNYE METOD, pCH5