New version of the Rayleigh-Schrodinger perturbation theory

被引:0
作者
Kalhous, M
Skála, L
Zamastil, J
Cízek, J
机构
[1] Charles Univ, Fac Math & Phys, CR-12116 Prague 2, Czech Republic
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
quantum mechanics; Rayleigh-Schrodinger perturbation theory; wavefunctions; Barbanis hamiltonian;
D O I
10.1135/cccc20030295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
New version of the Rayleigh-Schrodinger perturbation theory based on the linear dependence of the perturbation wavefunctions on the perturbation energies is summarized. It is shown that this method is suitable also for multidimensional problems and the linear dependence can be used at an arbitrary point inside the integration region. The resulting perturbation theory is simple and can be used at large orders. As an example, the method is applied to the Barbanis hamiltonian.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 1970, QUANTUM MECH
[2]   A new efficient method for calculating perturbative energies using functions which are not square integrable: Regularization and justification - Comment [J].
Au, CK ;
Chow, CK ;
Chu, CS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11) :4133-4136
[3]   AVOIDED CROSSINGS AND RESUMMATION OF NEARLY RESONANT MOLECULAR VIBRATIONS - RECONSTRUCTION OF AN EFFECTIVE SECULAR EQUATION [J].
FRIED, LE ;
EZRA, GS .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (11) :6378-6390
[4]   A new efficient method for calculating perturbation energies using functions which are not quadratically integrable - Comment [J].
Guardiola, R ;
Ros, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19) :6461-6465
[5]   Strong coupling perturbation expansions for anharmonic oscillators.: Numerical results [J].
Skála, L ;
Cízek, J ;
Zamastil, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (30) :5715-5734
[6]   Perturbation theory using functions that are not quadratically integrable [J].
Skála, L ;
Kalhous, M ;
Zamastil, J ;
Cízek, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12) :L167-L174
[7]  
Skala L, 1996, J PHYS A-MATH GEN, V29, P6467, DOI 10.1088/0305-4470/29/19/031
[8]   Large-order behavior of the convergent perturbation theory for anharmonic oscillators [J].
Skála, L ;
Cízek, J ;
Weniger, EJ ;
Zamastil, J .
PHYSICAL REVIEW A, 1999, 59 (01) :102-106
[9]   Large-order analysis of the convergent renormalized strong-coupling perturbation theory for the quartic anharmonic oscillator [J].
Skala, L ;
Cizek, J ;
Kapsa, V ;
Weniger, EJ .
PHYSICAL REVIEW A, 1997, 56 (06) :4471-4476
[10]  
SKALA L, 1996, J PHYS A, V29, P129