Bifurcations and Exact Traveling Wave Solutions of Degenerate Coupled Multi-KdV Equations

被引:5
作者
Li, Jibin [2 ]
Chen, Fengjuan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 03期
基金
中国国家自然科学基金;
关键词
Solitary wave; kink wave; periodic wave solution; exact parametric representation; bifurcation; SYSTEMS;
D O I
10.1142/S0218127416500450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the degenerate coupled multi-KdV equations. Depending on the coupled multiplicity l, the study of the traveling wave solutions for this model derives a series of planar dynamical systems. We consider the cases of l = 2, 3, 4. On the basis of the investigation on the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we obtain all possible explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, kink and anti-kink wave solutions) under different parameter conditions.
引用
收藏
页数:27
相关论文
共 10 条
[1]  
ALONSO LM, 1980, J MATH PHYS, V21, P2342, DOI 10.1063/1.524690
[2]   COUPLED KDV EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP .
PHYSICA D, 1987, 28 (03) :345-357
[3]   A FAMILY OF COMPLETELY INTEGRABLE MULTI-HAMILTONIAN SYSTEMS [J].
ANTONOWICZ, M ;
FORDY, AP .
PHYSICS LETTERS A, 1987, 122 (02) :95-99
[4]  
Byrd P., 1971, Grundlehren der mathematischen Wissenschaften
[5]  
Curses M., 1998, J MATH PHYS, V39, P2103
[6]   Degenerate Svinolupov KdV systems [J].
Gurses, M ;
Karasu, A .
PHYSICS LETTERS A, 1996, 214 (1-2) :21-26
[7]  
Gurses M., 2015, ARXIV150602362V1
[8]   Traveling wave solutions of degenerate coupled Korteweg-de Vries equation [J].
Gurses, Metin ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (09)
[9]  
Li J., 2013, Singular Nonlinear Traveling Wave Equa- tions: Bifurcation and Exact Solutions
[10]   On a class of singular nonlinear traveling wave equations [J].
Li, Jibin ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :4049-4065