Electric-field-induced modulation of thermal conductivity in poly (vinylidene fluoride)

被引:56
作者
Deng, Shichen [1 ,2 ]
Yuan, Jiale [1 ,2 ]
Lin, Yuli [3 ,4 ]
Yu, Xiaoxiang [1 ,2 ]
Ma, Dengke [5 ,6 ]
Huang, Yuwen [1 ,2 ]
Ji, Rencai [1 ,2 ]
Zhang, Guangzu [3 ,4 ]
Yang, Nuo [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol HUST, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol HUST, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[5] Nanjing Normal Univ, NNU SULI Thermal Energy Res Ctr NSTER, Nanjing 210023, Peoples R China
[6] Nanjing Normal Univ, Ctr Quantum Transport & Thermal Energy Sci CQTES, Sch Phys & Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Phonon engineering; Thermal conductivity; Electric field poling;
D O I
10.1016/j.nanoen.2021.105749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phonon engineering focuses on heat transport modulation in atomic-scale. Different from reported methods, it is shown that electric field can also modulate heat transport in ferroelectric polymers, poly(vinylidene fluoride), by both simulation and measurement. Interestingly, the thermal conductivities of poly(vinylidene fluoride) array can be enhanced by a factor of 3.25 along the polarization direction by simulation. The thermal conductivities of semi-crystalline poly(vinylidene fluoride) film can be also enhanced by a factor of 1.5 which is shown by both simulation and measurement. The mechanism is analyzed by morphology and phonon properties. It is found that the enhancement arises from the higher inter-chain lattice order, stronger inter-chain interaction, higher phonon group velocity and suppressed phonon scattering. This study offers a new modulation strategy with quick response and without fillers.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Predictions of Thermo-Mechanical Properties of Cross-Linked Polyacrylamide Hydrogels Using Molecular Simulations [J].
An, Meng ;
Demir, Boris ;
Wan, Xiao ;
Meng, Han ;
Yang, Nuo ;
Walsh, Tiffany R. .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (03)
[2]   Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals [J].
Barako, Michael T. ;
Sood, Aditya ;
Zhang, Chi ;
Wang, Junjie ;
Kodama, Takashi ;
Asheghi, Mehdi ;
Zheng, Xiaolin ;
Braun, Paul V. ;
Goodson, Kenneth E. .
NANO LETTERS, 2016, 16 (04) :2754-2761
[3]   Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites [J].
Barako, Michael T. ;
Roy-Panzer, Shilpi ;
English, Timothy S. ;
Kodama, Takashi ;
Asheghi, Mehdi ;
Kenny, Thomas W. ;
Goodson, Kenneth E. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19251-19259
[4]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[5]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[6]   Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique [J].
Canetta, Carlo ;
Guo, Samuel ;
Narayanaswamy, Arvind .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (10)
[7]   High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique [J].
Cao, Bing-Yang ;
Li, Yuan-Wei ;
Kong, Jie ;
Chen, Heng ;
Xu, Yan ;
Yung, Kai-Leung ;
Cai, An .
POLYMER, 2011, 52 (08) :1711-1715
[8]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[9]   Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport [J].
Coates, Nelson E. ;
Yee, Shannon K. ;
McCulloch, Bryan ;
See, Kevin C. ;
Majumdar, Arun ;
Segalman, Rachel A. ;
Urban, Jeffrey J. .
ADVANCED MATERIALS, 2013, 25 (11) :1629-1633
[10]   Quantum modelling of poly(vinylidene fluoride) [J].
Correia, HMG ;
Ramos, MMD .
COMPUTATIONAL MATERIALS SCIENCE, 2005, 33 (1-3) :224-229