Finite volume formulation of compact upwind and central schemes with artificial selective damping

被引:4
作者
Broeckhoven, T [1 ]
Smirnov, S [1 ]
Ramboer, J [1 ]
Lacor, C [1 ]
机构
[1] Free Univ Brussels, Dept Fluid Mech, B-1050 Brussels, Belgium
关键词
compact schemes; artificial selective damping; non-uniform meshes;
D O I
10.1007/s10915-004-1321-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper describes the use of compact upwind and compact central schemes in a Finite Volume formulation with an extension towards arbitrary meshes. The different schemes are analyzed and tested on several numerical experiments. A new formulation of artificial selective damping that is applicable on non-uniform Cartesian meshes is presented. Results are shown for a 1D advection equation, a 2D rotating Gaussian pulse and a subsonic inviscid vortical flow on uniform and non-uniform meshes and for a non-linear acoustic pulse.
引用
收藏
页码:341 / 367
页数:27
相关论文
共 21 条
[1]  
BUI T, 1999, NASATM1999206570
[2]   TIME-STABLE BOUNDARY-CONDITIONS FOR FINITE-DIFFERENCE SCHEMES SOLVING HYPERBOLIC SYSTEMS - METHODOLOGY AND APPLICATION TO HIGH-ORDER COMPACT SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) :220-236
[3]   THE STABILITY OF NUMERICAL BOUNDARY TREATMENTS FOR COMPACT HIGH-ORDER FINITE-DIFFERENCE SCHEMES [J].
CARPENTER, MH ;
GOTTLIEB, D ;
ABARBANEL, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) :272-295
[4]   Optimized compact-difference-based finite-volume schemes for linear wave phenomena [J].
Gaitonde, D ;
Shang, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) :617-643
[5]  
Gamet L, 1999, INT J NUMER METH FL, V29, P159, DOI 10.1002/(SICI)1097-0363(19990130)29:2<159::AID-FLD781>3.0.CO
[6]  
2-9
[7]   A COMPACT FINITE-DIFFERENCE SCHEME ON A NON-EQUIDISTANT MESH [J].
GOEDHEER, WJ ;
POTTERS, JHHM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 61 (02) :269-279
[8]  
KIM JW, 2000, 20001978 AIAA
[9]  
KIM JW, 1996, AIAA J, V34
[10]   On a class of Pade finite volume methods [J].
Kobayashi, MH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 156 (01) :137-180