Relative synonymous codon usage of ORF1ab in SARS-CoV-2 and SARS-CoV

被引:13
作者
Li, Gun [1 ]
Zhang, Liang [1 ]
Du, Ning [1 ]
机构
[1] Xian Technol Univ, Sch Elect Informat Engn, Dept Biomed Engn, Xian, Peoples R China
关键词
COVID-19; SARS-CoV-2; SARS-CoV; Coronavirus; Relative synonymous codon usage; Codon usage pattern; Gene evolution; COVID-19; BIAS;
D O I
10.1007/s13258-021-01136-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background COVID-19, as a novel coronavirus disease caused by new coronavirus SARS-CoV-2, spreads all over the world, and brings harm to human in many countries. Humans suffered a lot from both SARS-CoV-2 now and by SARS-CoV in the year 2003. It is important to understand the differences and the relationships between these two types of viruses. Objective To compare relative synonymous codon usage of ORF1ab gene in SARS-CoV-2 and SARS-CoV, relative synonymous codon usage of their genomes are studied in this paper from the bioinformatics perspective. Methods The ORF1ab gene, which is an important non-structural polyprotein coding gene and now used for nucleic acid detection markers in many measurement method, in both SARS-CoV-2 (30 strains) and SARS-CoV (20 strains) are considered to be the research object in the present paper. The relative synonymous codon usage values of the ORF1ab gene are calculated to characterize the differences and the evolutionary characteristics among 50 strains. Results There is a significant difference between SARS-CoV and SARS-CoV-2 when the relative synonymous codon usage value of ORF1ab genes is concerned. The results suggest that codon usage pattern of SARS-CoV is more similar to human than that of the SARS-CoV-2, and that the inner difference in SARS-CoV-2 strains is larger than that of SARS-CoV, which denote the larger diversity exits in the SARS-CoV-2 virus. Conclusion These results show that the relative synonymous codon usage values in the coronavirus could be used for further research on their evolutionary phenomenon.
引用
收藏
页码:1351 / 1359
页数:9
相关论文
共 50 条
  • [21] Potential Pathogenicity Determinants Identified from Structural Proteomics of SARS-CoV and SARS-CoV-2
    Prates, Erica T.
    Garvin, Michael R.
    Pavicic, Mirko
    Jones, Piet
    Shah, Manesh
    Demerdash, Omar
    Amos, B. Kirtley
    Geiger, Armin
    Jacobson, Daniel
    MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (02) : 702 - 715
  • [22] SARS-CoV, MERS-CoV, SARS-CoV-2 Comparison of Three Emerging Coronaviruses
    Zeidler, Agnieszka
    Karpinski, Tomasz M.
    JUNDISHAPUR JOURNAL OF MICROBIOLOGY, 2020, 13 (06) : 1 - 8
  • [23] Differential Tropism of SARS-CoV and SARS-CoV-2 in Bat Cells
    Lau, Susanna K. P.
    Wong, Antonio C. P.
    Luk, Hayes K. H.
    Li, Kenneth S. M.
    Fung, Joshua
    He, Zirong
    Cheng, Flora K. K.
    Chan, Tony T. Y.
    Chu, Stella
    Aw-Yong, Kam Leng
    Lau, Terrence C. K.
    Fung, Kitty S. C.
    Woo, Patrick C. Y.
    EMERGING INFECTIOUS DISEASES, 2020, 26 (12) : 2961 - 2965
  • [24] Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses
    Gu, Haogao
    Chu, Daniel K. W.
    Peiris, Malik
    Poon, Leo L. M.
    VIRUS EVOLUTION, 2020, 6 (01)
  • [25] Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins
    Gorkhali, Ritesh
    Koirala, Prashanna
    Rijal, Sadikshya
    Mainali, Ashmita
    Baral, Adesh
    Bhattarai, Hitesh Kumar
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2021, 15
  • [26] Coronavirus in Continuous Flux: From SARS-CoV to SARS-CoV-2
    Dong, Yetian
    Dai, Tong
    Liu, Jun
    Zhang, Long
    Zhou, Fangfang
    ADVANCED SCIENCE, 2020, 7 (20)
  • [27] Temporal evolution and adaptation of SARS-CoV-2 codon usage
    Posani, Elisa
    Dilucca, Maddalena
    Forcelloni, Sergio
    Pavlopoulou, Athanasia
    Georgakilas, Alexandros G.
    Giansanti, Andrea
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (01):
  • [28] Tropism of SARS-CoV-2, SARS-CoV, and Influenza Virus in Canine Tissue Explants
    Bui, Christine H. T.
    Yeung, Hin Wo
    Ho, John C. W.
    Leung, Connie Y. H.
    Hui, Kenrie P. Y.
    Perera, Ranawaka A. P. M.
    Webby, Richard J.
    Schultz-Cherry, Stacey L.
    Nicholls, John M.
    Peiris, Joseph Sriyal Malik
    Chan, Michael C. W.
    JOURNAL OF INFECTIOUS DISEASES, 2021, 224 (05) : 821 - 830
  • [29] Immune Responses in SARS-CoV-2, SARS-CoV, and MERS-CoV Infections: A Comparative Review
    Irani, Soussan
    INTERNATIONAL JOURNAL OF PREVENTIVE MEDICINE, 2022, 13 (01) : 45
  • [30] Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses
    Abdelrahman, Zeinab
    Li, Mengyuan
    Wang, Xiaosheng
    FRONTIERS IN IMMUNOLOGY, 2020, 11