Application of transfer learning to predict diffusion properties in metal-organic frameworks

被引:16
作者
Lim, Yunsung [1 ]
Kim, Jihan [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
MOLECULAR-DYNAMICS; ADSORPTION; CO2; FLEXIBILITY; ALGORITHMS; SEPARATION; MEMBRANES;
D O I
10.1039/d2me00082b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transfer learning (TL) facilitates the way in which a model can learn well with small amounts of data by sharing the knowledge from a pre-trained model with relatively large data. In this work, we applied TL to demonstrate whether the knowledge gained from methane adsorption properties can improve a model that predicts the methane diffusion properties within metal-organic frameworks (MOFs). Because there is a large discrepancy in computational costs between the Monte Carlo (MC) and molecular dynamics (MD) simulations for gas molecules in MOFs, relatively cheap MC simulations were leveraged in helping to predict the diffusion properties and we demonstrate performance improvement with this method. Furthermore, we conducted a feature importance analysis to identify how the knowledge from the source task can enhance the model for the target task, which can elucidate the process and help choose the optimal source target to be used in the TL process.
引用
收藏
页码:1056 / 1064
页数:9
相关论文
共 56 条
[1]  
Agarap A.F., 2018, CoRR abs/1803.08375
[2]   Quantitative Structure-Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification [J].
Aghaji, Mohammad Zein ;
Fernandez, Michael ;
Boyd, Peter G. ;
Daff, Thomas D. ;
Woo, Tom K. .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (27) :4505-4511
[3]   Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation [J].
Altintas, Cigdem ;
Altundal, Omer Faruk ;
Keskin, Seda ;
Yildirim, Ramazan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2131-2146
[4]   High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations [J].
Altintas, Cigdem ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3668-3679
[5]  
[Anonymous], SANGWON91 GRIDAYPUBL
[6]  
[Anonymous], WELCOME ELI5 S DOCUM
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks [J].
Bucior, Benjamin J. ;
Bobbitt, N. Scott ;
Islamoglu, Timur ;
Goswami, Subhadip ;
Gopalan, Arun ;
Yildirim, Taner ;
Farha, Omar K. ;
Bagheri, Neda ;
Snurr, Randall Q. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (01) :162-174
[9]   High-Performing Deep Learning Regression Models for Predicting Low-Pressure CO2 Adsorption Properties of Metal-Organic Frameworks [J].
Burner, Jake ;
Schwiedrzik, Ludwig ;
Krykunov, Mykhaylo ;
Luo, Jun ;
Boyd, Peter G. ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (51) :27996-28005
[10]   Applications of machine learning in metal-organic frameworks [J].
Chong, Sanggyu ;
Lee, Sangwon ;
Kim, Baekjun ;
Kim, Jihan .
COORDINATION CHEMISTRY REVIEWS, 2020, 423