Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method

被引:24
|
作者
Lew, Phoi-Tack [1 ]
Mongeau, Luc [1 ]
Lyrintzis, Anastasios [2 ]
机构
[1] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada
[2] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
来源
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA | 2010年 / 128卷 / 03期
关键词
BOUNDARY-CONDITIONS; FLOWS; SIMULATIONS; COMPUTATION; FORMULATION; SCHEMES; MODEL; SOUND;
D O I
10.1121/1.3458846
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, M-j=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These "VR tones" did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier-Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3458846]
引用
收藏
页码:1118 / 1127
页数:10
相关论文
共 50 条
  • [1] Microfiber Filter Performance Prediction Using a Lattice-Boltzmann Method
    Xavier Augusto, Liliana de Luca
    Ross-Jones, Jesse
    Lopes, Gabriela Cantarelli
    Tronville, Paolo
    Silveira Goncalves, Jose Antonio
    Raedle, Matthias
    Krause, Mathias J.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (04) : 910 - 931
  • [2] Airflow analysis in the alveolar region using the lattice-Boltzmann method
    Li, Z.
    Kleinstreuer, C.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (04) : 441 - 451
  • [3] Accuracy of the lattice-Boltzmann method
    Maier, RS
    Bernard, RS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 747 - 752
  • [4] Investigation of an entropic stabilizer for the lattice-Boltzmann method
    Mattila, Keijo K.
    Hegele, Luiz A., Jr.
    Philippi, Paulo C.
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [5] Large-eddy simulation of subsonic turbulent jets using the compressible lattice Boltzmann method
    Noah, Khalid
    Lien, Fue-Sang
    Yee, Eugene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) : 927 - 952
  • [6] Immersed boundary conditions for moving objects in turbulent flows with the lattice-Boltzmann method
    Cheylan, Isabelle
    Favier, Julien
    Sagaut, Pierre
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [7] Lattice-Boltzmann Method for Complex Flows
    Aidun, Cyrus K.
    Clausen, Jonathan R.
    ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 439 - 472
  • [8] A Lattice Boltzmann method for turbulent emulsions
    Biferale, Luca
    Perlekar, Prasad
    Sbragaglia, Mauro
    Srivastava, Sudhir
    Toschi, Federico
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): PARTICLES IN TURBULENCE, TRANSPORT PROCESSES AND MIXING, 2011, 318
  • [9] Magnetic Diffusion using Lattice-Boltzmann
    Fonseca, F.
    REVISTA MEXICANA DE FISICA, 2012, 58 (02) : 188 - 194
  • [10] Lattice-Boltzmann Method for Geophysical Plastic Flows
    Leonardi, Alessandro
    Wittel, Falk K.
    Mendoza, Miller
    Herrmann, Hans J.
    RECENT ADVANCES IN MODELING LANDSLIDES AND DEBRIS FLOWS, 2015, : 131 - 140