A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations

被引:33
作者
Cone, Angela C. [1 ]
Ambrosi, Cinzia [1 ]
Scemes, Eliana [2 ]
Martone, Maryann E. [1 ,3 ]
Sosinsky, Gina E. [1 ,3 ]
机构
[1] Univ Calif San Diego, Ctr Res Biol Syst, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA
[2] Albert Einstein Coll Med, Dominick P Purpura Dept Neurosci, Bronx, NY 10467 USA
[3] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
关键词
purinergic receptors; pannexin channels; ATP signaling; large field mosaic fluorescent imaging; paracrine signaling; connexin; knockout mouse; PERMEATION PORE INHIBITION; CELL-CENTERED DATABASE; GAP-JUNCTION; ATP RELEASE; CHANNELS; HEMICHANNELS; MOUSE; ASTROCYTES; FAMILY; INFLAMMASOME;
D O I
10.3389/fphar.2013.00006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and download.
引用
收藏
页数:19
相关论文
共 82 条
[1]   Pannexin1 and Pannexin2 Channels Show Quaternary Similarities to Connexons and Different Oligomerization Numbers from Each Other [J].
Ambrosi, Cinzia ;
Gassmann, Oliver ;
Pranskevich, Jennifer N. ;
Boassa, Daniela ;
Smock, Amy ;
Wang, Junjie ;
Dahl, Gerhard ;
Steinem, Claudia ;
Sosinsky, Gina E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (32) :24420-24431
[2]  
Anselmi F, 2008, P NATL ACAD SCI USA, V105, P18770, DOI [10.1073/pnas.0800793105, 10.1073/pnas.080079310S]
[3]   Intercellular calcium signaling mediated by point-source burst release of ATP [J].
Arcuino, G ;
Lin, JHC ;
Takano, T ;
Liu, C ;
Jiang, L ;
Gao, Q ;
Kang, J ;
Nedergaard, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9840-9845
[4]   Pannexin membrane channels are mechanosensitive conduits for ATP [J].
Bao, L ;
Locovei, S ;
Dahl, G .
FEBS LETTERS, 2004, 572 (1-3) :65-68
[5]   The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins [J].
Baranova, A ;
Ivanova, DV ;
Petrash, N ;
Pestova, A ;
Skoblov, M ;
Kelmanson, I ;
Shagin, D ;
Nazarenko, S ;
Geraymovych, E ;
Litvin, O ;
Tiunova, A ;
Born, TL ;
Usman, N ;
Staroverov, D ;
Lukyanov, S ;
Panchin, Y .
GENOMICS, 2004, 83 (04) :706-716
[6]   Pannexins in ischemia-induced neurodegeneration [J].
Bargiotas, Panagiotis ;
Krenz, Antje ;
Hormuzdi, Sheriar G. ;
Ridder, Dirk A. ;
Herb, Anne ;
Barakat, Waleed ;
Penuela, Silvia ;
von Engelhardt, Jakob ;
Monyer, Hannah ;
Schwaninger, Markus .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) :20772-20777
[7]   Hemichannels in Cerebral Ischemia [J].
Bargiotas, Panagiotis ;
Monyer, Hannah ;
Schwaninger, Markus .
CURRENT MOLECULAR MEDICINE, 2009, 9 (02) :186-194
[8]   Raise standards for preclinical cancer research [J].
Begley, C. Glenn ;
Ellis, Lee M. .
NATURE, 2012, 483 (7391) :531-533
[9]   Trafficking dynamics of glycosylated pannexin1 proteins [J].
Boassa, Daniela ;
Qiu, Feng ;
Dahl, Gerhard ;
Sosinsky, Gina .
CELL COMMUNICATION AND ADHESION, 2008, 15 (1-2) :119-132
[10]   Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane [J].
Boassa, Daniela ;
Ambrosi, Cinzia ;
Qiu, Feng ;
Dahl, Gerhard ;
Gaietta, Guido ;
Sosinsky, Gina .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (43) :31733-31743