Normal forms of dispersive scalar Poisson brackets with two independent variables

被引:2
作者
Carlet, Guido [1 ]
Casati, Matteo [2 ,3 ]
Shadrin, Sergey [4 ]
机构
[1] Univ Bourgogne Franche Compte, CNRS, UMR 5584, IMB, F-21000 Dijon, France
[2] Ist Nazl Alta Matemat, Rome, Italy
[3] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[4] Univ Amsterdam, Korteweg de Vries Inst Wiskunde, Postbus 94248, NL-1090 GE Amsterdam, Netherlands
关键词
Poisson brackets; Poisson cohomology; Hamiltonian operator; Miura transformation; DUBROVIN-NOVIKOV BRACKETS; HYDRODYNAMIC TYPE; HAMILTONIAN OPERATORS; DEFORMATIONS; HIERARCHIES; COHOMOLOGY; MANIFOLDS; SYSTEMS; THEOREM;
D O I
10.1007/s11005-018-1076-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.
引用
收藏
页码:2229 / 2253
页数:25
相关论文
共 24 条
[1]   On the moduli space of deformations of bihamiltonian hierarchies of hydrodynamic type [J].
Barakat, Aliaa .
ADVANCES IN MATHEMATICS, 2008, 219 (02) :604-632
[2]  
Carlet G, ARXIV150104295
[3]  
Carlet G, ARXIV161109134
[4]   Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets [J].
Carlet, Guido ;
Casati, Matteo ;
Shadrin, Sergey .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :404-419
[5]   The bi-Hamiltonian cohomology of a scalar Poisson pencil [J].
Carlet, Guido ;
Posthuma, Hessel ;
Shadrin, Sergey .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 :617-627
[6]   Bihamiltonian Cohomology of KdV Brackets [J].
Carlet, Guido ;
Posthuma, Hessel ;
Shadrin, Sergey .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (03) :805-819
[7]   On Deformations of Multidimensional Poisson Brackets of Hydrodynamic Type [J].
Casati, Matteo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (02) :851-894
[8]   A THEOREM ABOUT HAMILTONIAN-SYSTEMS [J].
CASE, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (18) :5893-5895
[9]   On deformation of Poisson manifolds of hydrodynamic type [J].
Degiovanni, L ;
Magri, F ;
Sciacca, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :1-24
[10]   On Hamiltonian perturbations of hyperbolic systems of conservation laws I: Quasi-triviality of bi-Hamiltonian perturbations [J].
Dubrovin, B ;
Liu, SQ ;
Zhang, YJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (04) :559-615