On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space Mp,q (R)

被引:15
作者
Chaichenets, Leonid [1 ]
Hundertmark, Dirk [1 ]
Kunstmann, Peer [1 ]
Pattakos, Nikolaos [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, D-76128 Karlsruhe, Germany
关键词
NONLINEAR SCHRODINGER-EQUATION; DISPERSIVE EQUATIONS; WELL-POSEDNESS; WELLPOSEDNESS;
D O I
10.1016/j.jde.2017.04.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global existence for the one-dimensional cubic nonlinear Schrodinger equation in modulation spaces M-p,M-p' for p sufficiently close to 2. In contrast to known results, [9] and [14], our result requires no smallness condition on initial data. The proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi and Grunrock to the modulation space setting and exploits polynomial growth of the free Schrodinger group on modulation spaces. (C) 2017 Karlsruhe Institute of Technology. Published by Elsevier Inc. All tights reserved.
引用
收藏
页码:4429 / 4441
页数:13
相关论文
共 15 条