Room-temperature Magnetism in Carbon Dots and Enhanced Ferromagnetism in Carbon Dots-Polyaniline Nanocomposite

被引:27
作者
Liu, Jian [1 ,2 ]
Bi, Hong [1 ]
Morais, Paulo Cesar [1 ,3 ]
Zhang, Xiang [1 ]
Zhang, Fapei [4 ]
Hu, Lin [4 ]
机构
[1] Anhui Univ, Coll Chem & Chem Engn, Hefei 230601, Peoples R China
[2] Hefei Normal Univ, Dept Chem & Chem Engn, Hefei 230601, Peoples R China
[3] Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[4] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
QUANTUM DOTS; GRAPHENE; POLYMER; METAL; NANOSTRUCTURES; SPINTRONICS; NANOTUBES; ORDER;
D O I
10.1038/s41598-017-01350-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Room temperature magnetic ordering is reported for very small carbon dots (CDs), mat-like polyaniline nanofibers (Mat-PANI) and a composite of CDs@Mat-PANI containing 0.315 wt% CDs. We have found saturation magnetization (MS) of CDs, Mat-PANI and CDs@Mat-PANI at 5 (20/300) K equals to 0.0079 (0.0048/0.0019), 0.0116 (0.0065/0.0055) and 0.0349 (0.0085/0.0077) emu/g, respectively. The MS enhancement in CDs@Mat-PANI (200% and 40% at 5 K and 300 K, respectively) is attributed to electron transfer from Mat-PANI imine N-atoms to the encapsulated CDs. Changes in MS values reveal that 0.81 (0.08) electron/CD is transferred at 5 (300) K, which is supported by observation of CDs photoluminescence (PL) redshift while in CDs@Mat-PANI. Band-bending and bandgap-renormalization calculations are used to predict a redshift of 117 meV at 300 K as a result of the electron transfer, in excellent agreement with the PL data (110 meV). Raman, X-ray diffraction and X-ray photoelectron spectroscopy data are used to confirm the electron transfer process as well as the strong interaction of CDs with PANI within CDs@Mat-PANI, which increases the crystalline domain size of Mat-PANI from about 4.8 nm to 9.2 nm while reducing the tensile strain from about 6.2% to 1.8%.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Photoluminescence of GaN/AlN quantum dots at high excitation powers
    Aleksandrov, Ivan
    Zhuravlev, Konstantin
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 7-8, 2010, 7 (7-8):
  • [2] Magnetic properties of C60 polymers -: art. no. 026801
    Andriotis, AN
    Menon, M
    Sheetz, RM
    Chernozatonskii, L
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (02) : 4
  • [3] Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
    Awschalom, David D.
    Bassett, Lee C.
    Dzurak, Andrew S.
    Hu, Evelyn L.
    Petta, Jason R.
    [J]. SCIENCE, 2013, 339 (6124) : 1174 - 1179
  • [4] Luminescent Carbon Nanodots: Emergent Nanolights
    Baker, Sheila N.
    Baker, Gary A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) : 6726 - 6744
  • [5] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [6] NMR evidence for heterogeneous disorder and quasi-1D metallic state in polyaniline CSA
    Beau, B
    Travers, JP
    Banka, E
    [J]. SYNTHETIC METALS, 1999, 101 (1-3) : 772 - 775
  • [7] Carbon dots for multiphoton bioimaging
    Cao, Li
    Wang, Xin
    Meziani, Mohammed J.
    Lu, Fushen
    Wang, Haifang
    Luo, Pengju G.
    Lin, Yi
    Harruff, Barbara A.
    Veca, L. Monica
    Murray, Davoy
    Xie, Su-Yuan
    Sun, Ya-Ping
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (37) : 11318 - +
  • [8] Investigation of many-body effects in one-side modulation-doped InP-InGaAs heterostructure
    Cardoso, AJC
    Morais, PC
    Cox, HM
    [J]. APPLIED PHYSICS LETTERS, 1996, 68 (08) : 1105 - 1107
  • [9] Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
    Cervenka, J.
    Katsnelson, M. I.
    Flipse, C. F. J.
    [J]. NATURE PHYSICS, 2009, 5 (11) : 840 - 844
  • [10] Cochet M, 2000, J RAMAN SPECTROSC, V31, P1029, DOI 10.1002/1097-4555(200011)31:11<1029::AID-JRS640>3.0.CO