Accelerated finite elements schemes for parabolic stochastic partial differential equations

被引:1
作者
Gyongy, Istvan [1 ,2 ]
Millet, Annie [3 ,4 ]
机构
[1] Univ Edinburgh, Maxwell Inst, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Paris 1 Pantheon Sorbonne, SAMM EA 4543, 90 Rue Tolbiac, F-75634 Paris, France
[4] LPSM, UMR 8001, Paris, France
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2020年 / 8卷 / 03期
关键词
Stochastic parabolic equations; Richardson extrapolation; Finite elements; RICHARDSON EXTRAPOLATION; SPATIAL APPROXIMATIONS; NUMERICAL SCHEMES; CONVERGENCE; EXPANSION; ERROR; ORDER;
D O I
10.1007/s40072-019-00154-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of finite elements approximations for linear stochastic parabolic PDEs it is proved that one can accelerate the rate of convergence by Richardson extrapolation. More precisely, by taking appropriate mixtures of finite elements approximations one can accelerate the convergence to any given speed provided the coefficients, the initial and free data are sufficiently smooth.
引用
收藏
页码:580 / 624
页数:45
相关论文
共 23 条
[1]   A NEW APPROACH TO RICHARDSON EXTRAPOLATION IN THE FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Asadzadeh, M. ;
Schatz, A. H. ;
Wendland, W. .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1951-1973
[2]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[3]   Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing [J].
Brzezniak, Zdzislaw ;
Carelli, Erich ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :771-824
[4]   RATES OF CONVERGENCE FOR DISCRETIZATIONS OF THE STOCHASTIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Carelli, Erich ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) :2467-2496
[5]  
Davie AM, 2001, MATH COMPUT, V70, P121, DOI 10.1090/S0025-5718-00-01224-2
[6]   LOCALIZATION ERRORS IN SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WHOLE SPACE [J].
Gerencser, Mate ;
Gyongy, Istvan .
MATHEMATICS OF COMPUTATION, 2017, 86 (307) :2373-2397
[7]   ACCELERATED FINITE DIFFERENCE SCHEMES FOR LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WHOLE SPACE [J].
Gyoengy, Istvan ;
Krylov, Nicolai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) :2275-2296
[8]   HIGHER ORDER SPATIAL APPROXIMATIONS FOR DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Hall, Eric Joseph .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (04) :2071-2098
[9]   ACCELERATED SPATIAL APPROXIMATIONS FOR TIME DISCRETIZED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Hall, Eric Joseph .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) :3162-3185
[10]   Finite element approximation of stochastic partial differential equations driven by poisson random measures of jump type [J].
Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria .
SIAM J Numer Anal, 2007, 1 (437-471) :437-471