High-order total variation-based image restoration

被引:648
作者
Chan, T
Marquina, A
Mulet, P
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Valencia, Dept Matemat Aplicada, E-46100 Valencia, Spain
关键词
image denoising; total variation; fourth order PDE;
D O I
10.1137/S1064827598344169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The total variation ( TV) denoising method is a PDE-based technique that preserves edges well but has the sometimes undesirable staircase effect, namely, the transformation of smooth regions ( ramps) into piecewise constant regions ( stairs). In this paper we present an improved model, constructed by adding a nonlinear fourth order diffusive term to the Euler-Lagrange equations of the variational TV model. Our technique substantially reduces the staircase effect, while preserving sharp jump discontinuities ( edges). We show numerical evidence of the power of resolution of this novel model with respect to the TV model in some 1D and 2D numerical examples.
引用
收藏
页码:503 / 516
页数:14
相关论文
共 15 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[3]  
BLOMGREN P, 1997, P SOC PHOT INSTR ENG
[4]  
BLOMGREN P, 1997, 9752 CAM U CAL LOS A
[5]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[6]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[7]   Preserving symmetry in preconditioned Krylov subspace methods [J].
Chan, TF ;
Chow, E ;
Saad, Y ;
Yeung, MC .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02) :568-581
[8]   On the convergence of the lagged diffusivity fixed point method in total variation image restoration [J].
Chan, TF ;
Mulet, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :354-367
[9]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[10]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU