General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares

被引:23
作者
Xu, Chenran [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Cusp forms; Fourier coefficient; Power sum; L-function;
D O I
10.1016/j.jnt.2021.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(f) (n) denote the nth normalized Fourier coefficient of the primitive holomorphic cusp forms of even integral weight k >= 2 for the full modular group SL(2, Z). For x >= 1, we are interested in the sums sigma(n <= x) lambda(f)(n)(l) and sigma(a2+b2 <= x )lambda(f) (a(2) + b(2))(l). In this paper, we are able to establish the asymptotic formulae for general cases of the power sum for every positive integer l is an element of N. The special cases of our results improve previous results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 229
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1997, GRADUATE STUDIES MAT
[2]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[3]  
Deligne P., 1974, PUBL MATH-PARIS, V43, P273
[4]  
Fomenko O.M., 1997, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), V237, P194
[5]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[6]   THE SQUARE MEAN OF DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS [J].
GOOD, A .
MATHEMATIKA, 1982, 29 (58) :278-295
[7]   THE GROWTH-RATE OF THE DEDEKIND ZETA-FUNCTION ON THE CRITICAL LINE [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1988, 49 (04) :323-339
[8]  
Ivi A., 1980, Stud. Sci. Math. Hungar, V15, P157
[9]  
Ivic A., 1992, P AMALFI C ANALYTIC, P231
[10]  
Kim HH, 2002, DUKE MATH J, V112, P177