Abelian subgroups of two-dimensional Artin groups

被引:2
作者
Martin, Alexandre [1 ,2 ]
Przytycki, Piotr [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] McGill Univ, Dept Math & Stat, Burnside Hall,805 Sherbrooke St West, Montreal, PQ H3A 0B9, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
20F36; (primary);
D O I
10.1112/blms.12500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify abelian subgroups of two-dimensional Artin groups.
引用
收藏
页码:1338 / 1350
页数:13
相关论文
共 10 条
[1]   ARTIN GROUPS AND INFINITE COXETER GROUPS [J].
APPEL, KI ;
SCHUPP, PE .
INVENTIONES MATHEMATICAE, 1983, 72 (02) :201-220
[2]  
Bridson M., 2013, Metric Spaces of Non-positive Curvature, DOI DOI 10.1007/978-3-662-12494-9
[4]   THE K(PI,1)-PROBLEM FOR HYPERPLANE COMPLEMENTS ASSOCIATED TO INFINITE REFLECTION GROUPS [J].
CHARNEY, R ;
DAVIS, MW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :597-627
[5]   GENERALIZED BRAID GROUPS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :273-&
[6]  
Huang J., 2020, ARXIV171100122
[7]   Cocompactly cubulated 2-dimensional Artin groups [J].
Huang, Jingyin ;
Jankiewicz, Kasia ;
Przytycki, Piotr .
COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (03) :519-542
[8]  
Martin-Guerrero J. D., 2019, ARXIV PREPRINT ARXIV
[9]  
Ronan Mark., 1989, Lectures on buildings, Perspectives in Mathematics, V7
[10]  
Van der Lek H., 1983, Ph.D Thesis