Stability Analysis for a Class of Jump-Diffusion Systems with Parameter

被引:0
|
作者
Yang, Hua [1 ,2 ]
Liu, Jianguo [1 ]
Jiang, Feng [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan, Hubei, Peoples R China
[2] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan, Hubei, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan, Hubei, Peoples R China
来源
2016 SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP) | 2016年
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
locally exponential stability; jump-diffusion systems with parameter; mild solution; PARTIAL-DIFFERENTIAL-EQUATIONS; EXPONENTIAL STABILITY; MILD SOLUTIONS; ASYMPTOTIC STABILITY; PTH MOMENT; EXISTENCE; DELAYS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic jump systems have great potential in finance engineering and stochastic control. In this paper, we mainly consider stability of stochastic jump-diffusion systems with parameter. We establish the criteria of locally exponential stability of mild solutions of the systems by using stochastic integral inequalities technique. We extend some existing results to more general cases. Finally, we use an example to show our result.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 50 条
  • [1] Exponential Stability for a Class of Semilinear Neutral Stochastic Jump-Diffusion Systems
    Yang, Hua
    Liu, Jianguo
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 308 - 313
  • [2] Full Bayesian Analysis for a Class of Jump-Diffusion Models
    Rifo, Laura L. R.
    Torres, Soledad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (08) : 1262 - 1271
  • [3] Numerical methods for a class of jump-diffusion systems with random magnitudes
    Jiang, Feng
    Shen, Yi
    Liu, Lei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (07) : 2720 - 2729
  • [4] Exponential Stability of Jump-Diffusion Systems with Neutral Term and Impulses
    Yang, Hua
    Liu, Jianguo
    Jiang, Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [5] Stability for multidimensional jump-diffusion processes
    Wee, IS
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 80 (02) : 193 - 209
  • [6] Stability for multidimensional jump-diffusion processes
    Zhang, QM
    Li, XN
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 753 - 756
  • [7] Convergence and stability of implicit methods for jump-diffusion
    Higham, Desmond J.
    Kloeden, Peter E.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (02) : 125 - 140
  • [8] MULTISCALE INTEGRATION SCHEMES FOR JUMP-DIFFUSION SYSTEMS
    Givon, Dror
    Kevrekidis, Ioannis G.
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 495 - 516
  • [9] Symbolic models for retarded jump-diffusion systems
    Jagtap, Pushpak
    Zamani, Majid
    AUTOMATICA, 2020, 111
  • [10] Probabilistic dynamics of some jump-diffusion systems
    Daly, E
    Porporato, A
    PHYSICAL REVIEW E, 2006, 73 (02):