ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS

被引:30
|
作者
Sanchez, Juan [1 ]
Net, Marta [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 01期
关键词
Continuation methods; periodic orbits; Poincare maps; multiple shooting; parallelism; variational equations; Krylov methods; periodic Schur decomposition; Krylov-Schur method; SCHUR-ALGORITHM; EQUATIONS; SYSTEMS;
D O I
10.1142/S0218127410025399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The application of the multiple shooting method to the continuation of periodic orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear systems which appear in the application of Newton's method is presented. It is based on the knowledge of invariant sub-spaces of the Jacobians at nearby solutions. The possibility of speeding up the process by using parallelism is studied for the thermal convection of a binary mixture of fluids in a rectangular domain, with positive results.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [31] Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations
    Kabel, Matthias
    Boehlke, Thomas
    Schneider, Matti
    COMPUTATIONAL MECHANICS, 2014, 54 (06) : 1497 - 1514
  • [32] On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method
    An, Heng-Bin
    Wen, Ju
    Feng, Tao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1399 - 1409
  • [33] C1-CONTINUATION OF PERIODIC ORBITS FROM HOMOCLINICS
    Cheng, Chong-Qing
    Zhou, Min
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 317 (01) : 67 - 118
  • [34] Scalable and Robust Dual-Primal Newton-Krylov Deluxe Solvers for Cardiac Electrophysiology with Biophysical Ionic Models
    Huynh, Ngoc Mai Monica
    Pavarino, Luca F.
    Scacchi, Simone
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 1029 - 1052
  • [35] APPLICATION OF FINITE DIFFERENCE JACOBIAN BASED NEWTON-KRYLOV MOTHOD FOR COUPLED NEUTRONICS/THERMAL CONDUCTION PROBLEMS OF NUCLEAR REACTOR
    Liu, Baokun
    Wu, Yingjie
    Zhang, Han
    Guo, Jiong
    Li, Fu
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 3, 2021,
  • [36] Continuation and shooting methods for boundary value problems of Bernstein type
    Granas, Andrzej
    Guenther, Ronald B.
    Lee, John W.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 6 (01) : 27 - 61
  • [37] A new numerical method for solution of boiling flow using combination of SIMPLE and Jacobian-free Newton-Krylov algorithms
    Hajizadeh, A.
    Kazeminejad, H.
    Talebi, S.
    PROGRESS IN NUCLEAR ENERGY, 2017, 95 : 48 - 60
  • [38] Continuation and shooting methods for boundary value problems of Bernstein type
    Andrzej Granas
    Ronald B. Guenther
    John W. Lee
    Journal of Fixed Point Theory and Applications, 2009, 6
  • [39] A monolithic ALE Newton-Krylov solver with Multigrid-Richardson-Schwarz preconditioning for incompressible Fluid-Structure Interaction
    Aulisa, Eugenio
    Bna, Simone
    Bornia, Giorgio
    COMPUTERS & FLUIDS, 2018, 174 : 213 - 228
  • [40] Reacting flow analysis of a cavity-based scramjet combustor using a Jacobian-free Newton-Krylov method
    Rouzbar, R.
    Eyi, S.
    AERONAUTICAL JOURNAL, 2018, 122 (1258) : 1884 - 1915