ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS

被引:30
|
作者
Sanchez, Juan [1 ]
Net, Marta [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 01期
关键词
Continuation methods; periodic orbits; Poincare maps; multiple shooting; parallelism; variational equations; Krylov methods; periodic Schur decomposition; Krylov-Schur method; SCHUR-ALGORITHM; EQUATIONS; SYSTEMS;
D O I
10.1142/S0218127410025399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The application of the multiple shooting method to the continuation of periodic orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear systems which appear in the application of Newton's method is presented. It is based on the knowledge of invariant sub-spaces of the Jacobians at nearby solutions. The possibility of speeding up the process by using parallelism is studied for the thermal convection of a binary mixture of fluids in a rectangular domain, with positive results.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [21] The Newton-Krylov Method Applied to Negative-Flux Fixup in SN Transport Calculations
    Fichtl, Erin D.
    Warsa, James S.
    Densmore, Jeffery D.
    NUCLEAR SCIENCE AND ENGINEERING, 2010, 165 (03) : 331 - 341
  • [22] Finding all periodic orbits of maps using Newton methods: sizes of basins
    Miller, JR
    Yorke, JA
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (3-4) : 195 - 211
  • [23] POMULT: A program for computing periodic orbits in Hamiltonian systems based on multiple shooting algorithms
    Farantos, SC
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) : 240 - 258
  • [24] Application of the Jacobian-Free Newton-Krylov Method to Nonlinear Acceleration of Transport Source Iteration in Slab Geometry
    Knoll, D. A.
    Park, H.
    Smith, Kord
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (02) : 122 - 132
  • [25] On the continuation of degenerate periodic orbits in Hamiltonian systems
    Meletlidou, E
    Stagika, G
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (01) : 131 - 138
  • [26] A Matrix-Free Newton-Krylov Parallel Implicit Implementation of the Absolute Nodal Coordinate Formulation
    Melanz, Daniel
    Khude, Naresh
    Jayakumar, Paramsothy
    Negrut, Dan
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (01):
  • [27] Proving the existence of long periodic orbits in 1D maps using interval Newton method and backward shooting
    Galias, Z
    TOPOLOGY AND ITS APPLICATIONS, 2002, 124 (01) : 25 - 37
  • [28] Numerical continuation of branch points of equilibria and periodic orbits
    Doedel, EJ
    Govaerts, W
    Kuznetsov, YA
    Dhooge, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 841 - 860
  • [29] CONTROL-BASED CONTINUATION OF UNSTABLE PERIODIC ORBITS
    Sieber, Jan
    Krauskopf, Bernd
    Wagg, David
    Neild, Simon
    Gonzalez-Buelga, Alicia
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 331 - 340
  • [30] Control-Based Continuation of Unstable Periodic Orbits
    Sieber, Jan
    Krauskopf, Bernd
    Wagg, David
    Neild, Simon
    Gonzalez-Buelga, Alicia
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (01):