C1 connecting lemma

被引:65
|
作者
Wen, L [1 ]
Xia, ZH
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1090/S0002-9947-00-02553-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Like the closing lemma, the connecting lemma is of fundamental importance in dynamical systems. Hayashi recently proved the C-1 connecting lemma for stable and unstable manifolds of a hyperbolic invariant set. In this paper, we prove several very general C-1 connecting lemmas. We simplify Hayashi's proof and extend the results to more general cases.
引用
收藏
页码:5213 / 5230
页数:18
相关论文
共 50 条
  • [21] Search for the decay χc1(3872) → π+π-χc1
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Ai, X. C.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Balossino, I.
    Ban, Y.
    Bao, H. -R.
    Batozskaya, V.
    Begzsuren, K.
    Berger, N.
    Berlowski, M.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bortone, A.
    Boyko, I.
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, T. T.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. L.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Y. Q.
    Chen, Z. J.
    PHYSICAL REVIEW D, 2024, 109 (07)
  • [22] Amplitude analyses of the decays χc1 → ηπ+π- and χc1 → η′π+π-
    Adams, G. S.
    Napolitano, J.
    Ecklund, K. M.
    Insler, J.
    Muramatsu, H.
    Park, C. S.
    Pearson, L. J.
    Thorndike, E. H.
    Ricciardi, S.
    Thomas, C.
    Artuso, M.
    Blusk, S.
    Mountain, R.
    Skwarnicki, T.
    Stone, S.
    Zhang, L. M.
    Bonvicini, G.
    Cinabro, D.
    Lincoln, A.
    Smith, M. J.
    Zhou, P.
    Zhu, J.
    Naik, P.
    Rademacker, J.
    Asner, D. M.
    Edwards, K. W.
    Randrianarivony, K.
    Tatishvili, G.
    Briere, R. A.
    Vogel, H.
    Onyisi, P. U. E.
    Rosner, J. L.
    Alexander, J. P.
    Cassel, D. G.
    Das, S.
    Ehrlich, R.
    Gibbons, L.
    Gray, S. W.
    Hartill, D. L.
    Heltsley, B. K.
    Kreinick, D. L.
    Kuznetsov, V. E.
    Patterson, J. R.
    Peterson, D.
    Riley, D.
    Ryd, A.
    Sadoff, A. J.
    Shi, X.
    Sun, W. M.
    Yelton, J.
    PHYSICAL REVIEW D, 2011, 84 (11):
  • [23] HYDRODYNAMICS AND ELECTRON-MICROSCOPY OF C1 AND C1
    SIEGEL, RC
    STRANG, CJ
    PHILLIPS, ML
    POON, PH
    SCHUMAKER, VN
    FEDERATION PROCEEDINGS, 1981, 40 (03) : 963 - 963
  • [24] On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
    Johanis, Michal
    Krystof, Vaclav
    Zajicek, Ludek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [25] MODULATION OF C1R ANTIGENICITY BY C1 INACTIVATOR (C1 IN)
    ZICCARDI, RJ
    COOPER, NR
    FEDERATION PROCEEDINGS, 1978, 37 (06) : 1377 - 1377
  • [26] Singular-Hyperbolic Connecting Lemma
    S. Bautista
    Y. Sánchez
    V. Sales
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [27] INHIBITION OF C1 BY ANTISERUM TO C1 DETECTION OF NON- HEMOLYTIC C1 ANTIGEN BY NEUTRALIZATION OF INHIBITION
    COLTEN, HR
    SPALTER, J
    BORSOS, T
    RAPP, HJ
    FEDERATION PROCEEDINGS, 1969, 28 (02) : 817 - &
  • [28] A sectional-Anosov connecting lemma
    Bautista, S.
    Morales, C.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 339 - 359
  • [29] Singular-Hyperbolic Connecting Lemma
    Bautista, S.
    Sanchez, Y.
    Sales, V
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [30] STUDIES ON CYTOCHROME C1 .2. OXIDATION MECHANISM OF CYTOCHROME C1 IN PRESENCE OF CYTOCHROMES A AND C1
    ORII, Y
    SEKUZU, I
    OKUNUKI, K
    JOURNAL OF BIOCHEMISTRY, 1962, 51 (03) : 204 - &