C1 connecting lemma

被引:66
作者
Wen, L [1 ]
Xia, ZH
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1090/S0002-9947-00-02553-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Like the closing lemma, the connecting lemma is of fundamental importance in dynamical systems. Hayashi recently proved the C-1 connecting lemma for stable and unstable manifolds of a hyperbolic invariant set. In this paper, we prove several very general C-1 connecting lemmas. We simplify Hayashi's proof and extend the results to more general cases.
引用
收藏
页码:5213 / 5230
页数:18
相关论文
共 16 条
[1]  
[Anonymous], J DYNAM DIFFERENTIAL
[2]   Connecting invariant manifolds and the solution of the C-1 stability and Omega-stability conjectures for flows [J].
Hayashi, S .
ANNALS OF MATHEMATICS, 1997, 145 (01) :81-137
[3]  
Liao S., 1979, ACTA SCI NAT U PEKIN, V1, P1
[4]  
LIAO ST, 1988, J SYS SCI MATH SCIS, V8, P193
[5]  
MAI J, 1986, SCI SINICA, V10, P1021
[6]  
MANE R, 1988, PUBL MATH-PARIS, V66, P139
[7]   ON THE GENERIC EXISTENCE OF HOMOCLINIC POINTS [J].
OLIVEIRA, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :567-595
[8]   PLANAR HOMOCLINIC POINTS [J].
PIXTON, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (03) :365-382
[9]  
Pugh C., 1983, ERGOD THEOR DYN SYST, V3, P261, DOI [10.1017/S0143385700001978, DOI 10.1017/S0143385700001978]
[10]   AGAINST C2 CLOSING LEMMA [J].
PUGH, CC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) :435-443