Improved Indoor Positioning by Means of Occupancy Grid Maps Automatically Generated from OSM Indoor Data

被引:5
作者
Graichen, Thomas [1 ]
Richter, Julia [1 ]
Schmidt, Rebecca [1 ]
Heinkel, Ulrich [1 ]
机构
[1] Tech Univ Chemnitz, Professorship Circuit & Syst Design, Reichenhainer Str 70, D-09111 Chemnitz, Germany
关键词
occupancy grid maps; OpenStreetMap; indoor maps; indoor positioning; ultra-wideband; ALGORITHMS;
D O I
10.3390/ijgi10040216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, there is a growing interest in indoor positioning due to the increasing amount of applications that employ position data. Current approaches determining the location of objects in indoor environments are facing problems with the accuracy of the sensor data used for positioning. A solution to compensate inaccurate and unreliable sensor data is to include further information about the objects to be positioned and about the environment into the positioning algorithm. For this purpose, occupancy grid maps (OGMs) can be used to correct such noisy data by modelling the occupancy probability of objects being at a certain location in a specific environment. In that way, improbable sensor measurements can be corrected. Previous approaches, however, have focussed only on OGM generation for outdoor environments or require manual steps. There remains need for research examining the automatic generation of OGMs from detailed indoor map data. Therefore, our study proposes an algorithm for automated OGM generation using crowd-sourced OpenStreetMap indoor data. Subsequently, we propose an algorithm to improve positioning results by means of the generated OGM data. In our study, we used positioning data from an Ultra-wideband (UWB) system. Our experiments with nine different building map datasets showed that the proposed method provides reliable OGM outputs. Furthermore, taking one of these generated OGMs as an example, we demonstrated that integrating OGMs in the positioning algorithm increases the positioning accuracy. Consequently, the proposed algorithms now enable the integration of environmental information into positioning algorithms to finally increase the accuracy of indoor positioning applications.
引用
收藏
页数:17
相关论文
共 47 条
[11]  
Gentner C, 2020, IEEE POSITION LOCAT, P1029, DOI [10.1109/plans46316.2020.9110232, 10.1109/PLANS46316.2020.9110232]
[12]   Occupancy Grid Map Generation from OSM Indoor Data for Indoor Positioning Applications [J].
Graichen, Thomas ;
Schmidt, Rebecca ;
Richter, Julia ;
Heinkel, Ulrich .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT (GISTAM), 2020, :168-174
[13]  
Herrera J., 2013, Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on, P1, DOI DOI 10.1109/IPIN.2013.6817877
[14]  
Karney C.F. F., 2019, Geographiclib
[15]   Algorithms for geodesics [J].
Karney, Charles F. F. .
JOURNAL OF GEODESY, 2013, 87 (01) :43-55
[16]  
Kokkinis A, 2013, 2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), P270, DOI 10.1109/PIMRC.2013.6666144
[17]   Improved occupancy grids for map [J].
Konolige, K .
AUTONOMOUS ROBOTS, 1997, 4 (04) :351-367
[18]  
Kurdej M., 2015, THESIS U TECHNOLOGIE
[19]  
Kurdej M, 2012, ADV INTEL SOFT COMPU, V164, P343
[20]  
Langley RB., 1999, GPS WORLD, V10, P52